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Abstract. Training models for speech recognition usually requires accu-
rate word-level transcription of available speech data. For the domain of
medical dictations, it is common to have “semi-literal” transcripts avail-
able: large numbers of speech files along with their associated formatted
episode report, whose content only partially overlaps with the spoken
content of the dictation. We present a semi-supervised method for gen-
erating acoustic training data by decoding dictations with an existing
recognizer, confirming which sections are correct by using the associated
report, and repurposing these audio sections for training a new acoustic
model. The effectiveness of this method is demonstrated in two applica-
tions: first, to adapt a model to new speakers, resulting in a 19.7% reduc-
tion in relative word errors for these speakers; and second, to supplement
an already diverse and robust acoustic model with a large quantity of
additional data (from already known voices), leading to a 5.0% relative
error reduction on a large test set of over one thousand speakers.

Keywords: Medical speech recognition, ASR, medical dictation, acous-
tic modeling

1 Introduction

Training automatic speech recognition (ASR) systems requires transcribed speech
corpora to build acoustic models (AMs) and language models (LMs). Tradition-
ally, such transcriptions are created by human labor, which imposes limitations
on how large such corpora can be, how many speakers they can cover, how
quickly they can be created, and how consistently transcriptions are following
required guidelines. To overcome these limitations, techniques have been pro-
posed to create transcriptions automatically, substantially increasing the size of
the training corpus with relatively little effort. For example, Suendermann et al.
perform speech recognition on millions of utterances collected in industrial spo-
ken dialog systems and determine, based upon the recognizer’s confidence score,
which of the hypotheses can be accepted without further review and which ones
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should undergo human quality assurance [8]. Such fully automatic techniques
suffer from the disadvantage that they rely on pre-existing speech recognition
models and settings and have no way to acquire new vocabulary or adapt to new
domains. Thus, they suffer if there is a significant mismatch between training
and adaptation language.

The medical transcription domain is a special case, however, in that speech
recordings of clinical dictations are almost always subject to transcription into a
formatted outpatient report which contains a well-formatted and corrected ver-
sion of the dictated matter. Note that the process of correcting and modifying
a literal transcript into a report is an extensive one and often involves changes
that make it impossible to use reports directly as ASR training data: intuiting
punctuation, list numbering, etc. when formatting is not explicitly spoken; exe-
cuting requests by the speaker (“scratch that,”, e.g.); or even inserting material
from elsewhere in the patient’s medical history.

Strategies for using this very rich set of data for the purpose of model en-
hancement, and to overcome its lack of word-level correspondence between spo-
ken and written content, have been discussed in the literature for about two
decades. Early research showed that this type of data can indeed be used to
adapt a speaker-independent model to new speakers [9, 5]; the basic approach is
to use an ASR engine to decode new audio with matching reports, then use the
results that can be verified correct as new training data. However, these studies
use very small test sets and speech recognition technology which is widely con-
sidered dated. Consequently, the baseline performance is very poor by modern
standards, and reported improvements often do not meet statistical significance
thresholds. To increase the amount of usable data beyond only the correct out-
puts of the recognizer, researchers have also explored using LMs for decoding
built specifically to the report [5] or have explored the use of phonetic [7] and
semantic [2, 6] features to correct ASR errors using the report as reference. How-
ever, the latter studies either did not test how accuracy of a speech recognizer
is impacted when adding the new data, or limited the study to LM adaptation.

Outside of the medical domain, this type of semi-supervised approach has
more recently been applied to parliamentary transcription, which is a similar case
in that large amounts of semi-verbatim transcription data are available [3, 4]. To
our knowledge, however, no validation of these methods exists for building AMs
for a modern, production-scale medical ASR system. In this paper we present
such a validation for two applications: adapting a model to previously unseen
speakers, and enhancing an already large model with additional data from known
speakers.

2 Method

We applied semi-supervised methods to enhance the training corpus for AMs in
two different experiments. Experiment 1 represents a case of speaker adaptation,
using semi-supervised data for speakers unknown to the original acoustic model.
In Experiment 2, on the other hand, we test whether a model can be augmented
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by adding a large quantity of additional data from many known speakers. The
general procedure for both experiments is the same; they differ only in the data
sources used. Except where otherwise specified, the methodological details given
below are identical for both experiments.

For each experiment, we built two AMs and compared their performance in
word error rate (WER) on a test set. AM1 was a “traditional” model, trained
from fully manually transcribed dictations; AM2 contained all the data of AM1
plus a large set of “virtual transcriptions,” generated by 1) ASR decoding of a
large set of untranscribed data, then 2) identifying correct hypotheses by com-
paring with matching reports. The entire training and testing process, including
all data and models, is described in detail in 2.2 and visualized in Figure 1.

2.1 Data

The primary source of training data consists of manually transcribed dictations,
as do all test sets for results reported in this paper. For Experiment 1, no speakers
from Test are represented in Train; for Experiment 2, all speakers in Test have
exactly one or two dictations in Train. (Recall that Experiment 1 tests the
adaptation of a model to new speakers, and Experiment 2 tests the bolstering
of an already comprehensive model with more data.)

In addition, we have access to a large number of audio dictations with corre-
sponding reports but no transcripts. This corpus constitutes the “Untranscribed”
set for each experiment. See Table 1 for size statistics of all corpora.

In general, corpora used for Experiment 2 are much larger than for Exper-
iment 1. The data also come from different providers, with different speakers,
recording conditions, and report styles. Despite the methodological similarity
between the two experiments, they should be considered entirely separate cases.

Table 1. Summary of all dictations. Manual transcriptions are available for Train
and Test, and reports for Untranscribed. AM1 was trained on Train and AM2 on
Train+Aug.

Data set # speakers # utterances # hours

Experiment 1

Train 245 6,857 305.0
Test 26 32 3.5

Untranscribed 458 12,207 652.8
Augmentation 457 211,909 259.5
Train+Aug. 702 218,766 564.5

Experiment 2

Train 2,384 9,214 396.1
Test 1,033 1,033 28.9

Untranscribed 1,241 93,581 6646.5
Augmentation 1,228 2,269,801 2617.1
Train+Aug. 2,384 2,279,015 3013.2
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Although manual transcriptions are generally considered to be the most ac-
curate source of data for ASR training, medical speech is notoriously difficult
due to a number of factors including specialized vocabulary, high rate of speech,
etc. [1]. The medical transcriptionists who created Train and Test did so with
the aid of matching reports, which themselves were generated through multiple
rounds of transcription and quality assurance by other trained transcriptionists.

Additionally, to estimate human WER when unaided by reports, we obtained
separately three rounds of transcription on a set of 334 dictations: two rounds
using reports as a reference, as is our normal procedure, and one “blind” round.
These dictations did not overlap with any other data set. Note also that these
reports were taken from the same provider as the data from Experiment 2, so
any human WER results should only be considered relevant to Experiment 2.

2.2 Generating additional AM training data

The entire Untranscribed set was decoded using our best prior acoustic model
and a specially designed language model (AM1 and LM1, described below).
Sequences of correctly recognized words in the hypotheses were identified by
aligning hypotheses with reports using a dynamic programming algorithm. Any
sequence consisting of five or more consecutive words matching perfectly between
hypothesis and transcript was excised, alongside its matching audio range, and
considered a training utterance in a large set of supplementary, semi-supervised
training data, which we call the Augmentation set (see Table 1). We decided
upon a five-word window based on an informal assessment of the excised clips;
shorter windows exhibited more slight errors in word boundary detection, which
we suspected would propagate in re-training.

Our approach for generating training data is conservative in that we only
allow perfect matches of substantial length between hypothesis and report. This
ensures that virtual transcriptions are as accurate as possible. Although we pi-
loted some strategies for correcting hypotheses using reports, we have found
that, for the quanitities of data that we are considering, the perfect matches
already provide very large training corpora by themselves.

2.3 Acoustic and language modeling

Our speech recognizer is based on a state-of-the-art stack with 40-dimensional
MFCCs, deltas and delta-deltas, fMMLR, ivectors, SAT, GMM-HMM pre-training,
and a DNN acoustic model. Two n-gram LMs were used: a trigram model (LM1)
for decoding the large Untranscribed set, and a 4-gram model (LM2) for the ex-
perimental results comparing AM1 and AM2. (LM1 is faster to decode with,
whereas LM2 is more accurate, so LM1 was chosen for the massive Untran-
scribed set and LM2 to achieve the best possible results on Test.) To generate
LM1, language models are first built for 1) the Train set and 2) the Train +
Untranscribed sets; these two are then interpolated, with coefficients tuned to
minimize perplexity on a held-out set, to yield the final model. The procedure
for LM2 was the same, except that all n-gram counts of Untranscribed were
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Fig. 1. Experimental training and decoding procedure. Rectangles represent audio,
possibly transcribed; cylinders, reports; diamonds, models; ellipses, decoding results.

decremented by one, effectively removing singletons and significantly accelerat-
ing decoding for an otherwise slow 4-gram model with minimal effect on WER.

At no point did we use Augmentation data to train LMs. We suspected that
doing so would bias the recognizer towards easy speech and very short utterances.
(Note also that some version of the linguistic information from the Augmentation
set is already present in the LM, which contains Untranscribed.) This bias is not
a concern for AM training, where the currency of recognition is at the phonetic
level, and transitional probabilities between words are less important.

3 Results: Experiment 1

For Experiment 1, we compared WER on our test set between the baseline
acoustic model (AM1) and the large expanded acoustic model (AM2). AM2
decreases the WER from AM1 by 19.7% relative, from 23.1% WER (5,377 edits
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out of 23,257 words) to 18.6% (4,317 edits), a statistically significant difference
as determined by a test of equal proportions (χ2 = 146.2, p < .001). Out of 26
speakers, 22 exhibit a decline in WER—up to a 52.6% relative reduction in the
most extreme case (from 105 errors down to 46 errors, out of 512 words). Of the
4 that see an increase, the highest is an 11.1% relative increase (72 errors up to
80, out of 436 words). The distribution across speakers of relative WER change
is visualized in Figure 2.

Histogram of error change from AM1 to AM2 (Exp. 1)
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Fig. 2. Relative WER change by speaker, AM1 to AM2 (Experiment 2).

4 Results: Experiment 2

For Experiment 2, we also measured differences in WER between two acoustic
models. Additionally, as the test set contains a much larger number of speakers
compared to Experiment 1, we dive deeper into the by-speaker results. Note
again that all models and corpora in this Experiment are different than those
used in Experiment 1; mentions of ‘AM1’/‘AM2’ in this section refer now to the
Experiment 2 versions of these.

4.1 Decoding accuracy

Decoding with AM2 decreases the WER from AM1 by 5.0% relative, from 22.0%
WER (52,961 edits out of 240,382 words) to 20.9% (50,332 edits). Though this
effect is smaller than that demonstrated in Experiment 1, the difference is still
statistically significant (χ2 = 85.2, p < .001).
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Histogram of error change from AM1 to AM2 (Exp. 2)
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Fig. 3. Relative WER change by speaker, AM1 to AM2 (Experiment 2).

The decrease in error rate is far from uniform across all speakers, however:
relative WER over each speaker decreases by as much as 56% and increased by
as much as 75%. WER increases for 303 out of 1033 speakers. See Figure 3 for
the distribution of relative change for individual speakers.

4.2 Effect of amount of data added

The extreme range of variation between speakers, and the fact that many speak-
ers actually see a deterioration in performance, is a surprising finding that invites
an explanation. Towards this end, a natural question is whether there is any re-
lationship between the observed changes in WER and the amount of audio data
added from the Augmentation set. Across all speakers, there is a correlation
between relative change in WER and minutes of audio added, albeit a weak one
(Kendall’s τ = −.046, p = .026; correlation is measured over ranks because time
added is non-parametric, with a long right tail). This correlation measurement
is only possible given the huge number of speakers in the Experiment 2 test set;
no significant similar effect could be observed for Experiment 1.

The relationship between time added and WER is visualized in Figure 4.
For this plot, speakers are grouped into bins according to the amount of audio
data added, with each bin accounting for a 10-minute range (inclusive on the
low end only). The plot shows WER for AM1 (narrow end of the trapezoid)
and AM2 (wide end) for each bin—thus, the trapezoid “points” in the direction
of the change—calculated over all utterances in that bin. We performed a test
of equal proportions for each bin, applying Bonferroni correction for multiple
comparisons; those five bins with p < .05 are starred in the plot. (Note that the
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Fig. 4. Binned speaker WERs by amount of audio for each speaker in Augmentation
data (Experiment 2). AM1 WER is marked by the narrow end of the bar, AM2 WER
by the wide end with a circle. Asterisks underneath bars denote statistical significance
of WER change from AM1 to AM2 (α = .05, Bonferroni correction).

degree of change in a bin is not necessarily tied to statistical significance, as bins
do not all contain the same number of speakers or spoken words.)

These individual bins are rather small, so most do not show statistically sig-
nificant changes; all those that do are for speakers with fewer than 220 minutes
of speech added. Most interesting, however, is that the only bin to show a sig-
nificant increase in WER using AM2 is the 0- to 10-minute bin. This increase
is driven mostly by the 30 speakers (out of the bin’s 44 total) who had no ad-
ditional data added and saw an increase in WER of over 2% absolute, 8.5%
relative (χ2 = 16.2, p < .001). These 30 speakers stand in stark contrast to the
dataset as a whole, which shows a 1.1% decrease in absolute WER.

4.3 Human word error rate

Table 2. Human WER between different sets of transcriptions. The “Assisted” con-
ditions were done by professional transcriptionists using matched final reports as a
reference, and “Unassisted” by transcriptionists without access to the reports.

Comparison WER

Assisted1–Assisted2 9.3%
Assisted1–Unassisted 18.0%
Assisted2–Unassisted 20.1%
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Given the nature of the data used in this work (recordings with at times
extreme noise, non-native accent, audio compression artifacts, hesitations, etc.),
and inspired by an earlier publication along these lines [1], we decided to study
inter-rater consistency of the dataset by measuring the human error rate. Since
our standard transcription procedure (Assisted condition) provides transcrip-
tionists with the existing outpatient report of the dictation (which itself had
undergone at least two tiers of transcription), we decided to conduct two types
of human error rate experiments: (a) compare two transcriptions of the same au-
dio files created in the Assisted condition and (b) compare transcriptions created
in the Assisted condition with those in the Unassisted condition. We expected
(a) to exhibit a lower WER than (b) due to the existence of shared material.

The inter-transcriber WERs are given in Table 2. In the Unassisted condi-
tion, transcribers differ from the Assisted conditions by 18.0% to 20.1%. From
these results, it appears that WER on our data by a single transcriber without
pre-generated reference material would approach 20%. Even when such material
is available, however, there are notable disagreements or errors in transcription
(9.3%), further emphasizing the difficulty of the speech in these dictations. Re-
call again that we commissioned these transcriptions only for the data used in
Experiment 2; human WER for Experiment 1 may not be this high.

5 Discussion

Our proposed method of providing guaranteed accurate data for AM retraining
leads to models with lower average decoding error rates. For the purposes of
adapting a model to previously unseen speakers, there was a major reduction in
WER, eliminating nearly a fifth of all errors. When bolstering an already large
model, the gains are somewhat more modest—especially so when considering
that AM2 in Experiment 2 was trained on 7.6 times the amount of audio data as
AM1. Our human WER measurements do suggest, however, that these dictations
are especially difficult, and that we are already approaching human accuracy, so
it may simply be the case that performance of the acoustic models has been
“saturated” by this point.

The more mixed results in Experiment 2, as well as the large and diverse test
set used, invite some speculation as to how speakers may be affected differently
vis-à-vis their WER by the data augmentation step. Despite the average drop in
WER with AM2, performance did deteriorate in some instances. This was most
evident for speakers for whom no data was added to the model. We suspect the
cause is that the representation of these speakers in AM2 was diluted compared
to their representation in the much smaller AM1. As a concrete recommendation,
we would not suggest using an augmented acoustic model for speakers who had
no data added, assuming they were already represented in the base model.

Other than in this specific case, however, it was difficult to demonstrate any
strong relationship between the amount of data added for a speaker and the
degree of recognition improvement. One explanation may be the presence of a
confounding effect: speakers with higher AM1 WERs will naturally have less
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data in the Augmentation set. Because accurate recognition on Untranscribed
is a prerequisite for finding utterances to add to Augmentation, speakers for
whom the model already does well tend to have the most added data. Indeed,
there is a moderately strong correlation (Kendall’s τ = −.20, p < .001) between
AM1 WER and amount of data added per speaker; note that this correlation is
visually unmistakable in the general downward trend on the left side of Figure 4.
Thus, speakers with the most added data tend to be those who already showed
low WER before augmentation. These same speakers would have had less “room
for improvement” from changes to the AM: indeed, those speakers with higher
AM1 WER tended to have larger relative improvements than those with lower
AM1 WER (τ = −.065, p = .002). Taken together, the effects of prior AM1
WER on WER change and on amount of data added may be obscuring some of
the positive effects of having more added data.

Further gains in performance may be possible via strategies described in
the literature for using reports to correct ASR errors on the Untranscribed set,
allowing speech previously missed by the recognizer to be used for training. While
our methods are sufficient to produce a very large training set, it is likely that
adding more difficult speech to training would improve recognition further. This
would effectively be an automated active learning approach, using alignment
with reports as a semi-supervised step. We also did not attempt to bolster LMs
in the same way we did for AMs; however, fully corrected machine transcripts
would make this possible to test also.

6 Conclusion

We presented and evaluated a semi-supervised method for augmenting a speaker-
independent AM using large numbers of dictations with matching final reports.
Our bolstered AMs achieve a significant reduction in error rates, inching closer
to human error rates. The methods detailed here are especially effective as a
means of adapting an AM to new speakers.

By measuring performance on a large test set of over 1,000 speakers, we were
able to note patterns in the procedure’s effects. The amount of data added seems
not to matter much, except that those speakers without any added acoustic
data saw on average an increase in WER. This leads naturally to the conclusion
that, whenever practical, different AMs should be used for different speakers
depending on whether or not data from the target speaker was added in the
augmentation stage.

Future work will include expanding the approach to language modeling and
applying more sophisticated techniques to select optimal models, e.g. using
speaker clustering. We will also look deeper into the influence of the human
error rate on ASR performance in both training and testing cycles and possible
techniques to enhance inter-rater reliability for this difficult domain.
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