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Abstract. We present a section boundary detection framework specif-
ically for clinical dictations. Detection is cast as a semi-supervised bi-
nary tagging problem and solved using a neural network model com-
posed of a stack of embeddings, unidirectional long-short term mem-
ory units (LSTMs), and sigmoid outputs. Physicians’ dictations doc-
umenting clinical encounters are typically transcribed using automatic
speech recognition (ASR) followed by a post-processor (PP) to trans-
form the raw text into written reports. Section boundary detection can
be performed directly upon the raw text to better anticipate the post-
processing stage: we describe an architecture for real-time (“live”) ASR
use in which sections detected by the tagger are sent individually to a
machine translation-based PP (for which continuous execution in real
time would not be possible). Our implementation of section detection
makes viable the use of a sophisticated machine learning PP in a live
dictation paradigm.
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1 Introduction

Clinical documentation in the form of written reports virtually always follows
a structured format, with various types of information primarily constrained
to the appropriate (and often clearly identified) sections of the note. Due to
the ubiquity of this organizational style, a common first step for information
extraction or data mining of clinical text is to detect and classify sections [9, 3].

Medical records can be produced and entered into a database using one
of several strategies. One means adopted by many physicians is to dictate a
description of a clinical encounter, which is then transcribed, converted into a
report by either a human transcriber or an automated system, and finally sent
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back to the physician for approval. For automated systems, automatic speech
recognition (ASR) converts the spoken words to their text representations, and
then a post-processor (PP) is used for formatting the raw text to create the
final report (by adding punctuation, casing, inserting section headers, new lines,
numbers for numeral items, etc). In the dictation modality, section headers are
sometimes spoken explicitly and sometimes not; in the latter case, the transcriber
must rely on context to insert them. In the case of using automated systems, the
problem is complicated by possible ASR errors. Thus, detecting actual section
boundaries in dictations themselves can be difficult.

To the best of our knowledge, nobody has looked at medical dictation section
boundary detection as a stand-alone problem; previous studies focus on convert-
ing the dictations to the final report to appear in the electronic medical record
(EMR) [8, 5]. While this process does perform section detection implicitly, it
does not make that information available at an early stage for other processes
to rely on. Determining these boundaries early has several potential advantages.

One possible use case is re-scoring ASR lattices using deep language models
(LMs). Widely used ASR frameworks only permit building a decoding graph
from n-gram LMs, which cannot model long-term dependencies. Deep recurrent
LMs are typically deployed by re-scoring the decoding lattice, possibly changing
the best ASR hypothesis obtained by an n-gram LM. Medical dictations typ-
ically consist of several minutes of continuous speech, and splitting these long
dictations to shorter independent segments can expedite the rescoring process.

Real-time access to the report of the physician’s dictation is very valuable
in a fast-paced health care environment, where a patient’s condition can change
rapidly. Therefore, another use case for identifying section boundaries, which we
investigate in this paper, is to use section breaks to segment the dictation to
enable real time use of a PP in a live ASR setting. Live ASR provides physicians
with immediate access to the output of the ASR system, as opposed to batch
ASR, where the dictation has to pass through a separate system off-line and
come back for review later. We recently presented a successful PP based on
statistical machine translation [5] called the MTPP, which significantly reduces
error rates from a different hybrid rule- and machine learning-based PP but
requires significantly more time to run, especially for longer inputs. This added
runtime is not an issue in batch ASR, as it is still much faster than the recognition
itself. In a live environment, however, the MTPP is too slow to be re-run after
every word. Moreover, the MTPP can benefit from having the full context of a
finished section during translation, whereas the MTPP hypothesis for a dictation
currently in mid-section will often have errors due to unusual right-edge context.

On the other hand, if we split the incoming dictation by sections, a com-
pletely dictated section can be sent to the MTPP to run in the background
while the physician dictates the next section. After a few seconds, when ma-
chine translation has finished, the raw text is replaced with its post-processed
output in a manner that is not distracting to the user. In short, our method of
section boundary detection at the point of dictation enables the use of sophisti-
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cated data-driven natural language processing (NLP) techniques in conjunction
with large vocabulary continuous ASR (LVCASR) all in real time.

2 Related work

There are several previous studies on text segmentation and classification in
clinical records. For instance, Denny et al. [3] devised an algorithm using NLP
techniques and Näıve Bayes algorithm to find section boundaries and identify sec-
tion headers. Ginter et al. [6] proposed to use hidden Markov models (HMMs) for
segmenting and classifying the sections. Tepper et al. [14] presented algorithms
based on maximum entropy (ME) and beam search to simultaneously segment
and classify sections. Dai et al. [2] presented a conditional random field (CRF)
classifier for section header tagging, assuming that the headers are present in the
text. These studies were focused on structural reports, whereas our study con-
siders raw medical dictations. There are previous studies which use raw medical
dictations as their input. For instance, Jancsary et al. [8] presented a statistical
framework based on CRFs for transforming medical dictations into clinical re-
ports, simultaneously identifying structures such as sections, headers and lists.
However, our study is focused solely on finding the section boundaries from dic-
tations, which can be useful as a preprocessing step for many of these tasks, by
sending the detected sections instead of the full dictation to these PPs.

3 Resources

3.1 Datasets for section boundary detection

For training our tagger, we explore the use of transcripts (i.e., the ideal ASR
case), ASR hypotheses, or a combination of both. We use a dataset of 18,769
medical reports, with their parallel ASR hypotheses as given by our ASR system
[4]. Our ASR is composed of an acoustic model (AM) built by a neural networks-
based methodology to predict phonemes from acoustic features and a LM which
is a 3- or 4-gram statistical model tailored with methods of interpolation and
pruning, used to address the large medical vocabulary challenge. Since manual
transcription is costly, we have a smaller dataset of 9,073 medical reports with
their parallel manual transcriptions. We divide these randomly into training
and testing sets, making sure that the test sets for both of these corpora are
attributed to the same dictations.

We detect the sections in the manually prepared reports using regular ex-
pressions (to detect the section headers), which is very reliable for the corpus of
reports we used due to regular adherence to a style guide specifying the form of
section headers. To find the break points in the corresponding ASR hypotheses,
we used dynamic programming to find the word alignments between them. Prior
to doing so, we processed reports to represent all punctuation as tokens and to
include a dummy token for the section boundary itself. During alignment, we ex-
plicitly disallowed “substitution” as an edit to account for this dummy token; it
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had to be considered an “insertion.” The place of this insertion was then marked
as the section boundary in the dictation. (Additionally, we considered certain
words to be equivalent for alignment purposes—for example, ‘examination’ and
‘exam’, as it is commonly dictated.)

Figure 1 illustrates an example of an ASR hypothesis and its parallel report
with section boundaries marked using this algorithm. Table 1 provides the details
of our datasets in terms of the number of documents, total number of tokens,
the number of unique tokens (i.e., types), and the number of sections.

Note that ASR hypotheses have the advantage of being more similar to the
test domain during real-time application, which can help the tagger contend with
common mistakes of ASR, and they are less costly to obtain than transcripts.
On the other hand, as transcripts are more accurate than ASR hypotheses, they
resemble the reports more, and therefore the alignment algorithm is more accu-
rate for them. Using a mix of both for training the tagger, it was hypothesized,
might include the advantages of both.

Table 1. The statistical properties of datasets (hyp: ASR hypotheses, tra: transcripts).

set data type #documents #tokens #types #sections

train
hyp 17,769 11,458,474 29,846 169,790
tra 8,073 4,038,911 29,569 70,611
hyp + tra 25,842 15,497,385 39,280 240,401

test
hyp 1,000 700,973 13,757 10,685
tra 1,000 712,629 14,731 10,708

3.2 Dataset for MTPP evaluation

We eventually use our tagger to split the dictation into pieces and pass them
through the MTPP. Note, however, that the statistical machine translation
model used in the MTPP was trained on full dictations that were not segmented
by section. Thus, we need to evaluate the quality of the final report when the
MTPP is fed with smaller segments.

We hypothesized also that a translation model trained on shorter sections
may perform better on sections during testing. For this model (hereafter, MTPP-
SEC), we use the same data used to train and tune the MTPP [5], with one key
difference: when building parallel training samples, ASR hypothesis samples with
more than 20 tokens are passed through the tagger for further splitting. The split
sections are aligned to the report phrases using the alignment method explained
in Section 3.1. The bitexts of the tuning set are likewise split using the same
tagger and the alignment method; thus, the hyper-parameters of the MT model
are set according to the expectation of translating individual sections.

We use a corpus of 1,172 medical reports, along with the ASR hypotheses
of their associated dictations, for evaluation of PP live usage. We divide this
corpus into development and test as shown in Table 2. Note that, for setting the
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this is doctor mike miller dictating

a consult for john j o h n doe d o e

social one two three four five six seven

eight nine service i d one two three

four five six seven eight nine | the

examinee is a thirty nine year old golf

course maintenance worker that we were

asked to see for evaluation of the chest

pain medical history | includes asthma

paragraph hypertension paragraph

(a) ASR output

SSN: 123-45-6789
Service ID: 123 456 789

HISTORY OF PRESENT ILLNESS:
To date, the examinee is a 39 year-old golf course
maintenance worker that we were asked to see for
evaluation of the chest pain.

PAST MEDICAL HISTORY:
Includes asthma and hypertension.

(b) Report

Fig. 1. The ASR output (a) and it’s corresponding report (b). Using the alignment
algorithm, the dictation is tagged with section boundaries using blue pipes (a).

hyper-parameter of the MTPP in Section 5.4, we rely on the development set;
the test set is used only for reporting the results in this paper.

4 Approach

We approach the problem of detecting section boundaries as a binary sequence
tagging problem over tokens, where a boundary token is labeled as 1 and all
others 0. To accomplish this, we use the popular RNN extension, LSTM [7].
LSTM solves the problem with vanishing or exploding gradient in vanilla RNN
by using a cell unit which keeps track of both short- and long- term dependencies.
As there are short- and long- term dependencies in medical dictations which can
help in detecting the section boundaries, LSTM is a natural fit for modeling
this problem. Our model is composed of an embedding layer, followed by an
LSTM layer, and finally an output layer of sigmoid units shared across all the
time frames. The model is trained to minimize binary cross entropy with Adam
optimizer [10]. We build all models using Keras [1] with a TensorFlow backend.

For many applications, researchers have obtained better results with bidirec-
tional LSTMs, which use separate forward and backward recurrent layers whose
outputs are concatenated as the input to the top layer, thus allowing consider-
ation of future context when decoding. This is not appropriate for our problem,
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Table 2. The statistical properties of datasets.

set data type #documents #tokens #types

dev
hyp 575 379,981 12,094
rep 575 362,834 29,089

test
hyp 597 358,403 10,773
rep 597 317,777 25,215

however, as we have to operate on incomplete dictations where future frames are
not available. Therefore, we rely on unidirectional LSTMs (although note that,
in pilot experiments, we achieved slightly better results when using bidirectional
LSTMs). This allows the tagger to be updated one frame at a time, enabling
very fast real-time decoding. A simplified architecture of our model is given in
Figure 2.
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Embedding

Sigmoid

LSTMs

Sigmoid

LSTMs

Sigmoid

medical history reveals... ...Input

Embedding layer

LSTM layer

Output layer

Target 0 0 1

Embedding Embedding

Fig. 2. Visualization of the section boundary detection model.

We experimented with initializing the embedding layer either randomly (emb:
random) or with pre-trained embeddings. In the case of pre-trained embeddings,
we use the original implementation of the word2vec package [11, 12] and consider
continuous bag-of-words embeddings with a size of 200, trained for 15 iterations
over a window of 8 words with no minimum count. When using pre-trained em-
beddings, we experimented with fixing the embeddings (emb: freeze) or allowing
back-propagation to fine-tune them during training (emb: fine-tune).

5 Experiments

We evaluate the performance of the tagger in terms of precision, recall and
F1-score of the split point. Pevzner and Hearst [13] proposed an alternative
metric for assessing segmentation, called WindowDiff (WD), which uses a sliding
window to count the errors, penalizing the near misses with a lower weight.
When the detected segmentation matches the ground truth segmentation, WD
becomes zero. Since this is a segmentation problem, we also report WD, setting
the window size as the average segment lengths of the ground truth.
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5.1 Word embeddings

We compare the three embedding settings (random, freeze, fine-tune) when train-
ing the tagger on the ASR hypotheses train set. Table 3 shows the evaluation
on the test set of ASR hypotheses. According to the results, the model per-
forms better in terms of precision, recall, F1-score, and WD when using the
pre-trained embeddings, compared to using random initialization (proportion
tests for WD, random vs. freeze: χ2 = 829.3, p < 0.001 and random vs. fine-
tune: χ2 = 892.7, p < 0.001). Moreover, fine-tuning the pre-trained embeddings
may also slightly enhance the result.

Table 3. Evaluation of the tagger trained and tested on ASR hypotheses.

Embedding Precision Recall F1-score WD

random 0.804 0.640 0.713 0.1380
freeze 0.837 0.677 0.749 0.1217
fine-tune 0.841 0.681 0.753 0.1211

5.2 Impact of ASR errors

Note that ASR errors can contribute to errors made by the alignment algorithm
(Sec. 3.1). These errors can then propagate to the tagger, as the training samples
may not be consistent. Furthermore, during inference, ASR errors unseen during
training can also increase the errors made by the tagger. Therefore, we perform
another set of experiments using the transcription sets. Due to the embeddings
results described in Section 5.1, we exclusively used pre-trained embeddings with
fine-tuning during training.

Precision, recall, and F1-scores are summarized in Table 4. The results of
testing the models on transcripts are only provided for analysis purposes, since
they are not the input of the model in real-world application. It appears that
the alignment algorithm finds more sections when using transcripts compared
to ASR hypotheses—refer to the last two rows of Table 1—suggesting that ASR
errors prevent the alignment from finding some of the sections in the ASR hy-
potheses. We speculate this may be the reason that the model trained on tran-
scripts gives higher recall on the ASR hypotheses test set, and the model trained
on ASR hypotheses gives lower recall on the transcripts. On the other hand, the
models trained on ASR hypotheses or the mix of ASR hypotheses and transcripts
have the advantage of overcoming some of the more common ASR mistakes, and
therefore give higher precision and lower WD on ASR hypotheses (proportion
tests for WD, training on hyp vs. tra: χ2 = 378.2, p < 0.001, and for training on
hyp vs. both: χ2 = 343.9, p < 0.001). The best model for ASR hypotheses seems
to be the one trained with both datasets (hyp + tra), which gives better perfor-
mance in terms of all metrics compared with the model trained with only ASR
hypotheses and higher precision and F1-score compared to the model trained on
transcripts. We rely on this model for experiments with the PP in Section 5.4.
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Table 4. Evaluation of the tagger in different train/test settings.

train
test hyp tra

Precision Recall F1-score WD Precision Recall F1-score WD

hyp 0.841 0.681 0.753 0.1211 0.868 0.734 0.796 0.1037
tra 0.817 0.709 0.759 0.1106 0.863 0.781 0.820 0.0871
hyp + tra 0.844 0.703 0.767 0.1110 0.874 0.771 0.819 0.0900

5.3 Comparison with baseline

CRFs have been used by previous studies for section header tagging [2, 8]. As
a baseline for our section tagger, we train a CRF model, using uni-gram and
bi-gram features, with a minimum count of one optimized with L2 regularized
stochastic gradient descent. We set the L2 regularization coefficient as 0.01, and
train the model for 100 epochs. This model achieves a precision of 0.832, recall
of 0.587, F1-score of 0.688 and WD of 0.1580. This evaluations shows that the
our RNN based section tagger outperforms the CRF baseline (proportion tests
for WD, χ2 = 6631.4 : p < 0.001).

5.4 Evaluation of live use of MTPP

We perform experiments to evaluate the effect of using the MTPP in a live ASR
setting, in which the detected sections are passed through the MTPP separately,
compared to batch mode, in which the full report is passed through the MTPP.
Recall that the MTPP is trained on bitexts that have not been separated by
section, and therefore splitting the task may influence the translation accuracy of
the final report. Therefore, we also evaluate the use of MTPP-SEC and compare
that with MTPP.

We use the tagger to detect the section boundaries, send these sections as
input for the PP sequentially, and concatenate the results to yield the full report.
We use a test set of 597 unseen ASR hypotheses with their parallel reports (Sec.
3.2) and measure the accuracy of PP in terms of post-processor error rate (PER).
PER is measured similar to word error rate (WER) but takes punctuation, case,
and certain whitespace characters into account. PER is a very harsh and honest
metric as it combines ASR errors with errors in post-processing, thus providing
some estimation of amount of manual work that would be needed to correct the
output.

Table 5 provides the PER for different conditions. As expected, applying the
MTPP independently on sections degrades the quality of the final report, which
is reflected in the increase in PER (proportion test: χ2 = 138.05, p < 0.001). Note
also, however, that when the MTPP is applied on sections separately, it reduces
the processing time required per token (z-test: z = 60.0, p < 0.001), as the run-
ning time of the MTPP is not linear with respect to the input length. (Splitting
into sections also carries the advantage that processing the sections can be easily
parallelized; our tests do not take this into account.) MTPP-SEC increases the
PER compared to MTPP (proportion test: χ2 = 26.00, p < 0.001), suggesting
that the model trained on shorter segments may have some shortcomings. Firstly,
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building the phrase table based on discrete sections may result in MTPP-SEC
not capturing some of edits around section boundaries—and these are precisely
the places where many edits occur (formatting headers, e.g.). Compared with
MTPP, the size of phrase table is reduced (17M vs 35M entries), which does
lead to reduced processing time per token (z-test: z = 4.9, p < 0.001). Secondly,
MTPP-SEC relies on parallel sections from ASR hypotheses and reports, which
are subject to tagging and alignment errors.

Since MTPP-SEC does not improve the PER compared to MTPP, in order
to compensate for the errors introduced by the MTPP, we propose to include
a window of n tokens from both preceding and following sections. Since these
overlapping tokens are processed twice, we use a post-editing process to remove
the extra tokens at the end of the previously formatted section and the extra
tokens in the beginning of the newly formatted section. We experimented with n
from {3, 4, ..., 7}, choosing n = 5, since after that PER does not decrease much
on the development set, but the processing time per token increases. This reduces
the PER on the test set very effectively (proportion test: χ2 = 61.59, p < 0.001)
at the cost of slightly increased processing time (z-test: z = 2.0, p = 0.04),
as some of the tokens are fed to MTPP twice. Adding overlaps is an effective
way to mitigate increased MT errors because many of the edits made during
the translation process occur around these boundaries—formatting the header,
adding newlines around boundaries, starting numerical items from the beginning
of a section, etc. Providing just a few tokens of context helps the MTPP achieve
much better results.

Table 5. Evaluation of the reports formatted by MTPP.

PP Mode PER Time/Token (ms)

MTPP Full ASR hypotheses 0.3126 115.5 ± 22.8

MTPP Split ASR hypotheses 0.3245 76.9 ± 28.3
MTPP-SEC Split ASR hypotheses 0.3261 64.8 ± 23.1
MTPP with overlap (n = 5) Split ASR hypotheses 0.3165 127.4 ± 65.4

6 Conclusion

We have shown that section detection in medical dictations is a tractable prob-
lem with deep learning methods. Splitting sections at the point of dictation, as
opposed to the report itself, is not a task that has been well explored in the
literature. Nevertheless, it has many potential applications; in the present study
we investigated the use of section detection to partition a dictation into sections
in a live medical ASR setting, passing each section through a sophisticated post-
processor for formatting while the speaker continues dictating the next section.
This can be done with minimal impact on error rates, thus enabling the use of a
non-instantaneous ASR post-processing stage in a live paradigm, giving access
to all the respective advantages of machine translation-driven post-processing
and real-time ASR.
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