Some potentially useful formulas

$$
\begin{aligned}
F(\omega) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{-i \omega t} \mathrm{~d} t ; \quad \omega \in \mathbb{R} \\
F_{r} & =\sum_{k=0}^{N_{0}-1} f_{k} e^{-i r k \frac{2 \pi}{N_{0}}} ; \quad r \in\left\{0, \ldots, N_{0}-1\right\} \\
e^{i x} & =\operatorname{cox}(x)+i \sin (x) \\
L_{p}(\vec{x}, \vec{y}) & =\sqrt[p]{\sum_{d=1}^{D}\left|x_{d}-y_{d}\right|^{p}}
\end{aligned}
$$

1 The holistic approach to speech recognition (10 pts)

You are given the following equations:

$$
\begin{align*}
F_{r} & =\sum_{k=0}^{N_{0}-1} f_{k} \cos \left[\frac{\pi}{N_{0}}\left(k+\frac{1}{2}\right) r\right] ; r \in\left\{0, \ldots, N_{0}-1\right\} \tag{1}\\
\hat{w}_{1}^{N} & =\underset{w_{1}^{N}}{\arg \max } p\left(w_{1}^{N} \mid x_{1}^{T}\right) \tag{2}\\
p\left(x_{1}^{T} \mid w_{1}^{N}\right) & =\sum_{s_{1}^{T}} p\left(x_{1}^{T}, s_{1}^{T} \mid w_{1}^{N}\right) \tag{3}\\
f_{k}^{\prime} & =f_{k} \cdot\left(0.54-0.46 \cos \left(\frac{2 \pi k}{N-1}\right)\right) \tag{4}\\
p\left(w_{1}^{M}\right) & =p\left(w_{1}\right) \prod_{m=2}^{M} p\left(w_{m} \mid w_{m-1}\right) \tag{5}
\end{align*}
$$

To which module of the holistic approach does each of these equations belong:

- speech analysis,
- acoustic model,
- language model,
- search?

Justify your answer.
Hint: Each equation corresponds to exactly one module but not necessarily vice versa.

2 Word error rate (10 pts)

a) Calculate the word error rate when I speak into the iPhone
oh my my oh my my
and Siri recognizes
my oh my my my.
b) What is the (i) lowest and what the (ii) highest word error rate a speech recognizer can produce? How do spoken sentences and recognition hypotheses have to look like for (i) and (ii), respectively?

3 Fourier transform (16 pts)

a) Determine $F(0)$ for the following time signals

$$
\begin{aligned}
& f_{1}(t)= \begin{cases}\sin \left(2 \pi f_{0} t\right) & : 0<t<\frac{1}{f_{0}} \\
0 & : \\
\text { otherwise }\end{cases} \\
& f_{2}(t)= \begin{cases}\sin \left(2 \pi f_{0} t\right) & : 0<t<\frac{1}{2 f_{0}} \\
0 & : \\
\text { otherwise }\end{cases} \\
& f_{3}(t)=\left\{\begin{array}{lll}
1 & : & 0<t<\frac{1}{f_{0}} \\
0 & : & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

b) We have learned that sudden jumps in the time signal correspond to a wide range of frequencies in the spectrum. Suppose you have a discrete time signal

$$
f_{k}= \begin{cases}0 & : \\ 1 & k \in\left\{1, \ldots, N_{0}-1\right\} \\ 1 & k=0\end{cases}
$$

Show that this discrete Dirac delta function has an entirely flat spectrum.

4 Speech analysis (6 pts)

The first two letters of the famous MFCC features stand for Mel Frequency, a scale \tilde{f} that depends on the Hertz frequency scale f as

$$
\tilde{f}=c \log _{10}\left(1+\frac{f}{d}\right)
$$

Determine the constants c and d such that

- 1 kMel corresponds to 1 kHz and
- c corresponds to 3 kHz .

5 Dynamic time warping (18 pts)

After speech analysis, an utterance spoken by a student results in the following feature vector sequence:

$$
x_{1}^{4}=\left[\begin{array}{llll}
3 & 9 & 1 & 0 \\
5 & 9 & 0 & 4
\end{array}\right] .
$$

The recognizer is able to recognize two words (foo and bar) each of which has a sample recording in the database:

$$
\begin{aligned}
x_{1}^{3,(\mathrm{foo})} & =\left[\begin{array}{lll}
8 & 3 & 0 \\
9 & 8 & 3
\end{array}\right], \\
x_{1}^{5,(\mathrm{bar})} & =\left[\begin{array}{lllll}
0 & 6 & 0 & 8 & 5 \\
9 & 4 & 2 & 3 & 9
\end{array}\right] .
\end{aligned}
$$

Determine the dynamic time warping costs $d_{\text {foo }}^{\prime}$ and $d_{\mathrm{bar}}^{\prime}$ using the standard $0,1,2$-alignment model and the Chebyshev distance L_{∞}. What did the student (presumably) say?

