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General remarks

e The most up-to-date version of this document as well as auxiliary
material can be found online at

http://suendermann. com
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Areas of speech processing

e Excerpt from the areas of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP 2012)

13: Speech processing

13.1: Speech production
13.2: Speech perception and psychoacoustics
13.3: Speech analysis
13.3.1: Spectral and other time-frequency analysis techniques
13.3.2: Distortion measures
13.3.3: Pitch/fundamental frequency analysis
13.3.4: Timing/duration/speaking rate analysis
13.3.5: Acoustic-phonetic features (e.g. formants)
13.3.6: Non-linguistic information (e.g. gender, emotion)
13.3.7: Voice quality
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Areas of speech processing (cont.)

13.4: Speech synthesis and generation
13.4.1: Concatenative synthesis
13.4.2: Statistical synthesis
13.4.3: Articulatory synthesis
13.4.4: Parametric synthesis
13.4.5: Prosody, emotional, expressive synthesis
13.4.6: Text-to-phoneme conversion
13.4.8: Voice conversion
13.5: Speech coding
13.6: Speech enhancement
13.7: Acoustic modeling for speech recognition
13.7.1: Feature extraction
13.7.2: Low-level feature modeling (e.g. Gaussians)
13.8: Robust speech recognition
13.9: Speech adaptation and normalization
13.11: Multilingual recognition and identification
13.12: Lexical modeling
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Areas of speech processing (cont.)

13.13: Search
13.13.1: Decoding algorithms
13.13.2: Lattices

13.14: Speaker recognition

14: Spoken Language Processing

14.1: Spoken language understanding [~KBS]
14.1.1: Semantic classification [-~KBS]
14.1.3: Spoken document summarization
14.1.4: Topic spotting and classification
14.1.5: Question answering
14.3: Spoken dialog systems [—KBS]
14.3.1: Systems, applications, and architectures [—~KBS]
14.3.2: Stochastic learning for dialog modeling [ —~KBS]
14.3.3: Response generation
14.3.5: Evaluation metrics [—~KBS]
14.3.6: Speech-based human-computer interfaces
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Areas of speech processing (cont.)

14.4: Speech data mining

14.5: Speech data retrieval
14.5.3: Voice search

14.6: Machine translation of speech

14.7: Language modeling [ KBS, ML]
14.7.1: N-grams and smoothing methods [ —ML]
14.7.3: Grammars [-KBS]

14.8: Spoken language resources and annotation [—-KBS]
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Applications of speech recognition

e Spoken dialog systems
— Call router
— Phone banking
— Technical support
— Directory assistance

— Train or flight schedule

e Command and control
— Car system control
— Voice dialing

e Dictation
— Text messaging

— Medical transcription
e Voice search

e Speech-to-speech translation
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Why is speech recognition not perfect?

e Variability of the signal
— Speaker differences (accent, age, gender)
— Speech differences (speaking rate, hesitations, repetitions)

— Evironmental differences (noise, microphone, channel)

e Too little training data
— Acoustic model
— Lexical model

— Language model

e Models exclude potentially essential information
— Phase
— Spectral fine structure
— Fundamental frequency
— Voicing

— |[play example utterance]
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The holistic approach to speech recognition

EV speech analysis speech > mmmBmEmﬁ._o? < hoocm:o model
signal features classification f
phoneme hypotheses
word boundaries, ﬂ
phoneme-to- < lexical model
grapheme f
word hypotheses
ecognized sentence , : ﬂ
kmm:ﬁm:om search ﬂ<coﬁ:mmmm syntactical analysis |« language BOQmw
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Evaluation of a speech recognizer

e To be able to evaluate performance of a recognizer in a fair fashion, the
evaluation data (test data) must never have seen before.

e Often, also training and development data are standardized for
multilateral evaluations.

e Most common performance metric is the word error rate:

Levenshtein distance
WER = (1)
number of spoken words

e The Levenshtein distance (aka edit distance) is the minimum number of
substitutions, deletions, or insertions necessary to map a string of spoken
words to the string of recognized words.
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Word error rate: example

e Example from a call router:

— Spoken words:

no i need repair on my phone its uh crackling and its ringing here
where i live and uh its just dead other than the crackling no dial
tone at all

— Recognized words:

no — need repair on my phone its not crackling and — ringing
here where i live — — in my bed other than the crackling there

no dial tone at all

substitution, insertion, — deletion

4 substitutions + 1 insertion + 4 deletions
WER = T T = 29% (2)
31 spoken words
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Word error rate: ambiguity

e Consider another example:

— Spoken words:

no need to repair my phone

— Recognized words:

no need repair my broken phone

— Determining word errors:

1) no need repair my broken phone [3 errors]

2) no need repair — my broken phone [3 errors]
3) no need — repair my broken phone [2 errors]

e Apparently, determining the minimum number of errors may not be as
trivial as it first seems.

D. Suendermann Speech Processing April 24, 2012

17



Levenshtein distance

e Examplifying the Levenshtein distance on the character level:

e In this matrix, penalties for
— a vertical step is 1 (insertion),

— a horizontal step is 1 (deletion),

S AT URTUDAY

0 1 2 3 4 5 6 7 8
S|{1 0 1 2 3 4 5 6 7
Uul2 1 1 2 2 3 4 5 6
N|(3 2 2 2 3 3 4 5 6
D|4 3 3 3 3 4 3 4 5
A5 4 3 4 4 4 4 3 4
Y|6 5 4 4 5 5 5 4 3

— a diagonal step is 0 if the target fields’ letters are identical, otherwise

1 (substitution).
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Levenshtein distance (cont.)

e Formally, the Levenshtein distance can be computed by an application of
dynamic programming (DP).

e DP is a method to solve complex problems by breaking them down into
simpler subproblems.

e In our case, the problem is to determine the minimal cost ¢ of a path
through a grid spanned by the two symbol sequences (letters, characters,
feature vectors, or the like)

n
1

T Ylge oo s Y (3)

3.
Liye-esLy and  y;":

e The cost c is nothing but the minimal cost of a path ending at the grid
node (n, m) where both sequences terminate:

c=1Il(n,m). (4)
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Levenshtein distance (cont.)

e Now, let us inductively define the cost (2, 5) for the minimal cost of a
path ending at the grid node (1, j):
— The start cost, i.e., the cost at the beginning of the path, is set to
zero, and the costs of initial deletions and insertions are defined as
boundary conditions:
[(0,0) =0; 1I(2,0)=z2forie {1,...,n}; [1(0,5) =7 forje{1,...,m}.
— For every grid node, the minimum cost is that one obtained by coming

from the vertical neighbor by insertion, from the horizontal neighbor
by deletion, or from the diagonal neighbor by potential substitution:

1(6,5) = min ({1(i,5 — 1) + 1,
NA@ — 1, .wv + 1,
:s. | H?w. - Hv +1— %S?SMV Amv
with the Kronecker delta
1 ifx=1y
Op,y = (6)

0 otherwise
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Levenshtein distance: exercise

e Calculate the Levenshtein distance between the sequences
r:°=1,0,0,1,1,0,1,0,0,1
and

vy =0,1,1,0,0,1,0,1,0, 1.

(7)

(8)
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Fourier transform

e The Fourier transform decomposes a function into sinusoids of different
frequency that sum to the original function.

e Definition of the Fourier transform:
17 |
Flw) = — \ e *“tdt: w € R. o)

e f and F occupy two domains (upper and lower) [Bracewell, 1965]:

Functions circulate[...] at ground level and their transforms in the underworld.

e f —— time (or spacial) domain; F — frequency domain
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Time signal vs. power spectrum
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The spectrogram

Original signal: “nineteenth century”
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Discrete Fourier transform (DFT)

e The (continuous) Fourier transform cannot directly be handled by
numerical computation that requires discrete sample values of f(t).

e The same applies to the frequency domain where a computer can
compute F'(w) only at discrete values of w.

e Using the discretization f, = f(kT) and F,. = F(rwg), the DFT is

defined as:
No—1 o
F, = MU fre “*No; r e {0,...,No— 1}
k=0
No—1 27 o 27
= M frxcos | rk— | —isin | rk— (10)
o No No

e In order to be able to reconstruct f from F., the Nyquist criterion has to
be satisfied, i.e., F(w) = 0 for |w| > %
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Fast Fourier transform (FFT)

e FFT was developed by [Cooley and Tukey, 1965]
(even though [Heideman™, 1984] discovered that Carl Friedrich Gauss
had invented the algorithm already in 1805).

e The most popular algorithm divides the N-point transform into two
transforms of size N /2 each.

e The algorithm is then recursively applied to each subdivision.

e This reduces the algorithm’s complexity from O(IN?) (DFT) to
O(N log N) (FFT).
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Applications

General Applications

optics (spectroscopy)
medical imaging (nuclear magnetic resonance)
solution of partial differential equations (spectral method)

multiplication of very large integers (using FFT)

Applications to Signal Processing of Digital Media

image and video processing
audio processing
speech processing

telecommunications

D. Suendermann Speech Processing April 24, 2012
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Applications (cont.)

Applications to Signal Processing of Digital Media (Details)

e image and video processing
— filtering, smoothing, sharpening
— restoration, blur removal, enhancement

— pattern recognition

— compression (JPG, MPEG)

e audio processing
— filtering, up- and down-sampling
— psycho-acoustic compression (mp3)
— noise reduction

— encryption

D. Suendermann Speech Processing April 24, 2012
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Applications (cont.)

Applications to Signal Processing of Digital Media (Details Cont.)

e speech processing
— speech recognition (MFCC, PLP, RASTA)
— voice conversion

— speech synthesis (FD-PSOLA, HMM-based)

— vocal tract length normalization

e telecommunications
— cellular communcation
— artificial bandwidth extension
— recovery of lost packets in VolP communication

— touch tone (DTMF)
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Dual-tone multi-frequency (DTMF)

e DTMF is used for telecommunication
signaling over analog telephone lines.

e It gradually replaced pulse dialing
starting with the introduction of the
telephone keypad by AT&T in 1963.

e DTMF is based on a mixture of two
sinusoids.

e (play example call)

e A, B, C, and D were used by the U.S.
military to give some calls priority.
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DTMF (cont.)

DTMF keypad frequencies

Example DTMF, time domain

)

[Hz] | 1209 1336 1477 | 05 i
697 1 2 3 3 \
Mm 0 A\ A <> >.
770 4 5 6 D / < < \
852 | 7 8 9 | .||
041 | * 0  # J (
-1 T _ _
4 time/ms 6 8
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DTMF (cont.)

DTMF keypad frequencies Example DTMF, frequency domain

[Hz] | 1209 1336 1477

697 3
770
852
9241

0.5

max

u/u

¥ ~N D
© 0O N

6
9
#

O I I I I I I I I

06 0.7 08 09 1 11 12 13 14 1.5
freq/kHz
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Audio and video encryption via scrambling

A scrambler is a device or algorithm that inverts or transposes a signal
(audio, video, etc.).

It renders the signal unintelligible at a receiver not equipped with a
proper descrambler.

The first scramblers were invented at Bell Labs just before World War IlI.

For example, one of the devices was used by Winston Churchill and
Franklin D. Roosevelt, however, it was intercepted and unscrambled by
the Germans.

Nowadays, scramblers are used for, e.g.
— cable TV (to prevent casual signal theft),
— satellite communication, and

— PSTN modems.
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Audio and video encryption via scrambling (cont.)

e A simple scrambling circuit for voice communication works as follows:

— Consider the frequency band from 0 to 4kHz (= telephony
bandwidth).

— Subdivide the frequency band into 4 equal sub-bands:
A (0-1kHz); B (1-2kHz); C (2-3kHz); D (3-4kHz).

— The original order of sub-bands is ABCD.

— To render the signal incomprehensible, we re-order the sub-bands to
CBDA (as an example).

e (play example scrambled signal)
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Audio and video encryption via scrambling (cont.)

e After descrambling:
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Audio and video encryption via scrambling (cont.)

e After descrambling:

We shall fight in France, we shall fight on the seas and oceans, we
shall fight with growing confidence and growing strength in the air, we
shall defend our island, whatever the cost may be. We shall fight on the
beaches, we shall fight on the landing grounds, we shall fight in the fields
and in the streets, we shall fight in the hills; we shall never surrender.
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Audio and video encryption via scrambling (cont.)

e After descrambling:

We shall fight in France, we shall fight on the seas and oceans, we
shall fight with growing confidence and growing strength in the air, we
shall defend our island, whatever the cost may be. We shall fight on the
beaches, we shall fight on the landing grounds, we shall fight in the fields
and in the streets, we shall fight in the hills; we shall never surrender.

Winston Churchill at the House of Commons, June 4, 1940
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Image compression

e The objective of image compression is to reduce redundancy and
irrelevance of image data.

e Lossless compression (reduces redudancy)

— run-length encoding [BMP, TGA, TIFF]
(WWWWWWWWBBWWWWWW — 8W2B6W)

— entropy/deflation/Huffman encoding [PNG, TIFF]
— adaptive dictionary algorithms [GIF, TIFF]

e Lossy compression (reduces irrelevance)
— reducing the color space

— chroma subsampling (give less resolution to chroma than to luma)

— transform coding [JPEG, MPEG]

D. Suendermann Speech Processing April 24, 2012
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JPEG codec

1. chroma subsampling
2. split the image in 8x8 pixel blocks

3. Each channel (RGB) or component (YCbCr) undergoes a discrete Cosine
transform (DCT).
4. Amplitudes of the frequency components are quantized:

— Human vision is more sensitive to variations in color and brightness
over large areas than to high-frequency variations.

— Consequently, high-frequency components are stored with less
resolution than low-frequency components.

— The JPEG quality setting affects the strength of the resolution
reduction.

5. apply Huffman encoding
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DCT

e taking an 8-bit example block centering its values around 0

(i.e., the value range is [—127, 128])

—76
—65
—66
—65
—61
—49
—43
—41

—73
—69
—69
—70
—67
—63
—57
—49

—67
—73
—60
—57
—60
—68
—64
—59

—62 —58 —67
—38 —19 —43
—15 16 —24

—6 260 —22
—24 =2 —40
—58 —51 —60
—69 —-73 —67
—60 —63 —52

—64
—59
—62
—58
—60
—70
—63
—50

—959
—56
—55
—59
—58
—53
—45
—34
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DCT (cont.)

e definition of the one-dimensional DCT:

Zolu
NHW%wOOmﬂ%ko+WVﬁ~W ﬁmﬁeu..;?\ol”&vﬁuv

e This is equivalent to a DFT of 4 Ng inputs of even symmetry where the
even-indexed elements are zero.

e definition of the two-dimensional DCT and application to the 8x8 pixel
block:

Fp, = Mﬂ Mquxi cos m ? + WV L cos m Q + WV L . rs € {0,...,7}.(12)

k=01=0
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DCT (cont.)

e The 2-dimensional DCT converts the 8x8 input block into a matrix of

values to a linear combination of the below 64 patterns.

e These patterns are referred to as basis functions.

[ _415.38 —30.19 —61.20 0.46

T 14T aiss —e07e ... s

i WIEE PR _46.83 7.37  77.13 —5.65
'. r‘L -i'— -.- -—L'-— -—-.-—- -—-—-—-—

H H._ H._._ Yy u:_ ._”_”.__u__. ..____.” P —48.53 12.07 34.10 1.95

e i e e 12.12 —6.55 —13.20 3.14

e —7.73 2.91 2.38 1.85

S=ose ~1.03  0.18  0.42 —0.66

e . —0.17 0.4 —1.07 1.68
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Quantization

e divide each value in the frequency domain by a constant for that
component and round to the nearest integer

e B, ; =round AMHMV s ryse{l,...,7}

e a typical quantization matrix:

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99
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Quantization (cont.)

e Typically, many higher-frequency values are rounded to 0, and the other

values become small positive or negative integers.

—— Many fewer bits are required for their representation.

[ _26

0

—3
—2

o o o o =

—6
—4

©O © © O N «m
I

S © ©O O K K N
|

©O © © © O K N

o O o o O o o =

© O O O O o o O

O o o O o o o O
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Vocal tract length normalization

e Vocal tract length normalization (VTLN) tries to compensate for the
effect of speaker-dependent vocal tract lengths.

e This is done by warping the frequency axis of the spectrum.

e speech recognition: normalization of a speaker’s voice to remove
individual speaker characteristics — recognition performance gain

e voice conversion: transformation of a standard speaker to
— several well-distinguishable individuals or to

— a given target speaker

D. Suendermann Speech Processing April 24, 2012
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VTLN (cont.)

target spectrum

warping function

source spectrum
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Categorization of VTLN warping functions

parameters || linear nonlinear

one e piece-wise linear with | e bilinear
two segments ® power
— asymmetric e quadratic
— symmetric

several e piece-wise linear with | e allpass trans-
several segments form
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Categorization of VTLN warping functions (cont.)

parameters || linear nonlinear

one e piece-wise linear with | e bilinear
two segments e power
— asymmetric e quadratic
— symmetric

several e piece-wise linear with | e allpass trans-
several segments form
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Example of a the piece-wise linear warping function

. Suendermann
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Time-domain VTLN

pitch tracking

:

DFT
FD-VTLN TD-VTLN
IDFT
PSOLA PSOLA

output speech '_

e VTLN is directly applied to time
frames of a speech signal.

e This is done by exploiting
time domain correspondences
of the Fourier transformation.

e Discrete Fourier transformation
and its inverse are omitted.

e This leads to a considerable
real-time factor boost,

while speech quality is preserved.
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Time-domain VTLN (cont.)

Time-Domain VTLN — Details

e The piece-wise linearly warped spectrum can be written as

I
5 ~ w — G4
X@loha) = Yx (U Relonwi)

1=0 Qg
I
: MU X @) ASVNE (w)
i=0
)
1: w; <w<wigs
with mAE_EsJEs.l_.Hv = X W : w=w; Vw = Wit1 ﬁ.wv
|0 : otherwise,
e and its time correspondence is
I I
T = ) FU(XORW) = Y z®r), (14)
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VTLN: sound samples

(sound samples)
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Speech analysis at a glance

E Uﬂmnmgﬁujmm_m N mQQ.BQDﬁm._”_OD. | DFT
signal windowing >
log — filter bank | _/\_m_-dﬂﬂmp.cm:o<
warping
DCT » normalization | ———» add dynamics |V“n\omwﬁm
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Speech analysis

1)

Pre-emphasis emphasizes high-frequency signal components

(which

otherwise account for much less energy than lower frequencies).

a) Every 10ms, a frame t € {1,...,T} of 25ms width is analyzed (see
spectrogram above).
b) This frame is windowed using e.g. a Hamming window:

amplitude

Window function (Hamming)

samples

frwi

fr -

0.54 — 0.46 cos

2k

N —1
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Speech analysis (cont.)

3) DFT extracts the spectrum ﬁ&olu from %muolp for every frame t.

4) Warp the spectrum according to the Mel scale (to increase resolution of
lower frequency components). Compare our discussions on VTLN for
other examples of frequency warping.

3200 — :
2000 -
2800 e Applying the warping function
2600 — .\u
2400 il r
2200 = 700
2000 ol .
@ 1800 e to .m,_iuﬁ results in .mwuvﬁ.
© 1600 \\
= 1400 d .
1200 \ pic:
1000 ® source:
800 - http://en.wikipedia.org/wiki/File:Mel-Hz plot.svg
ol Hm e author: Krishna Vedala
400 |
o h.x e license: Creative Commons Attribution-Share
nx Alike 3.0 Unported
o 1000 2000 3000 4000 5000 6000 7000 8OO0 9000 10000

Herz scale
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Speech analysis (cont.)

5) Apply a filter bank summing the magnitude spectrum components (i.e.
the absolute values of the spectrum) in bandpass filters (critical bands)
windowed with triangular windows:

Yiie =) |Frias; for i€ {1,...,I} (15)
with
(bF—i41 : Tl<E<d
ari =14 1—bi+i : <7<t (16)
. 0 : otherwise

Here, b is a constant that depends on the number of desired filter banks
I and the number of frequency components Ny:

I+1
b= ——— (e.g. Nog = 100,11 = 8). 17
N (@& No=100,1=8) (7
6) Calculate the logarithm of the filter bank output
Y/, = logYi. (18)
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Speech analysis (cont.)

7) Cepstral coefficients are calculated for every frame t using DCT (see also
above section on Fourier transform):

-1
, ™ [ 1
Crn,t = M i41.4C0S [— |1+ - |m|. (19)
: ’ I 2
1=0
8) Mean and energy normalization across all frames:
1 T
Cm,t - Cm,t — m Cm,75 Co,t -+ Co,t — —.:WX Co,r- AMOV
=1

9) For composing features vectors, commonly, the first 16 elements are
used. Furthermore, to account for signal dynamics, first and second
derivatives of the cepstral coefficients are added to produce the final
feature vectors:

16
Cit

Ty — Dﬁwu@ﬁ . AMHV
I DDQWW
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Distance measures

e In order to compare two feature vectors £ and y with the dimensionality
D, we need a distance measure (or metric) d with

d:R” x RP — RT. (22)
e We call d a metric iff
l. d(xz,y) =0 iff = =uy.
2. d(xz,y) = d(y, ) (symmetry).
3. d(z,y) < d(x, z) + d(z,y) (triangle inequality).

e Very common is the L, norm:

D

ly — ||, = ﬂ > |@a — yalP- (23)

d=1
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L, norm

e Special cases of the L, norm include

1. Manhattan distance

D
ly — |1 = ) |za — yal- (24)
d=1
2. Euclidean distance
D
ly —z|l2 = | > _(xa — ya)?. (25)
/ d=1
3. Chebyshev distance
|y — z||eo = max [zq — yal. (26)

d
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Command word recognition

e We now understand how a speech signal is converted into feature vectors
and how such vectors can be compared to each other.

e Now, we design a simple speech recognizer for command word
recognition as follows:

— At training time, collect M training samples and convert them into

T1,(1 Tag,(M
feature vector sequences HHEA v, e Huix ).

— Annotate each training sample with the respective command w,,, for
me {1,...,M}.

— At runtime, convert the speech signal to the feature vector sequence

T
Ly -

— Now, the recognized command is

Q"Sﬁwéﬁreﬁ HSmmq . 3%.5 &\ AHWQ HWS,ASVV . Awd
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Dynamic time warping

Only missing piece in this algorithm is the measure d’ (T, yY) which is
to evaluate the distance between the two vector sequences of generally
different length and timing patterns.

This is somewhat similar to our considerations on matching two word
sequences to measure the Levenshtein distance.

Indeed, d’ can be calculated by allowing for vectors to be skipped in HW

or y! to best match them to each other (deletions and insertions).

The notion of a substitution changes in that there are, generally, no
identical vectors anymore. Instead, every diagonal produces a non-zero
penalty. using dynamic programming as well.
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Dynamic time warping: example

to be recognized

-100

training sample |
nnam——-

&0 -

-100 —
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Dynamic time warping: example (cont.)

to be recognized

-100

training sample |l

“orders”

-100 —
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Dynamic time warping: example (cont.)

 _20 0 —8 —58 —126
. 61 38 53 36 2

to be recognized x8 =
0 -0 0 -0 -0
| —61 38 53 36 2
154 0 —195 —283
training sample | L5 (1) _ 10 105 7T —47
“bill” 1 0 0 —0 _0
10 105 7 —47

—239
—69
—0
—69

—327
—75

—75
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Dynamic time warping: example (cont.)

20 0 -8 —58 —126 —239 |
to be recognized x$ = —61 38 53 56 2 =6
-0 -0 0 -0 -0 -0
| —61 38 53 36 2 —69
—480 —2 —14 —380 0 —247 —372
training sample |l HMAB _ —57 109 56 —93 53 —14 —53
“orders” -2 -2 1 -1 6 -2 1
—57 109 56 —93 53 —14 —53
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Dynamic time warping: example (cont.)

114 313 97 79 122
159 95 200 307 364
training sample | (1) 158 74 198 309 367
“bill” Hwe”s ) = 103 114 143 254 311
30 193 69 172 229
140 343 116 54 88
273 316 254 179 262 78 165
498 100 29 423 22 258 394
training sample |l d@®, z,) = 497 79 7 425 10 257 394
“orders” 442 117 52 370 63 202 338
364 196 136 287 145 123 258
242 346 286 145 295 78 135
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Dynamic time warping: DP

e Similarly to the Levenshtein distance, dynamic time warping requires the
search for the grid path inducing minimal costs:
d =1(T,U). (28)

e Boundary conditions are defined to make sure, matrix edges are never

crossed:
[(0,0) =0; I(t,0) =0 forte {1,...,T}; 1(0,u) =00 foru e {1,...,U}.

e For every grid node, the path with the minimum cost ending in this node

iIs determined.

e In the case of symmetric time alighment, the same neighors as for the
determination of the Levenshtein distance are considered:

L(t,u) = d(x¢; Yu) + min ({I(t,u —1),1(t —1,u),l(t —1,u—1)}) (29)
e The standard 0,1,2-model forces the optimal path to be of length T, i.e.,
d’ will have the same number of addends for all m € {1,..., M}
resulting in a fair comparison:
:? Qv — &AH? @:v + min AA"H:& —1, Qvu :w —1,u— Hvu :u —1,u— vavﬁwov
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Dynamic time warping: example (cont.)

114 427 524 603 725
273 209 409 716 967
training sample | NA:T&:VH 431 283 407 716 1083
“bill” 534 397 426 661 972
564 590 466 598 827
704 907 582 520 608
273 589 843 1022 1284 1362 1527
771 373 402 825 847 1105 1499
training sample Il (5 (¢, u) = 1268 452 380 805 815 1072 1466
“orders” 1710 569 432 750 813 1015 1353
2074 765 568 719 864 936 1194
2316 1111 854 713 1008 942 1071
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Outline

e introduction

e speech recognition
— introduction
— evaluation/Levenshtein distance/dynamic programming
— Fourier transform
— speech analysis

— statistical models
e speech synthesis

® voice conversion
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From DTW to statistics

e The DTW approach requires a comparison between the utterance to be
recognized with every sample in the database.

e This is not feasible when the database becomes very large (modern
speech recognizers are trained using thousands of hours of speech data).

e A solution to this problem is to train statistical models describing the
essential information contained in the training data.

e Advantage of this approach is that
— the models require far less storage than the training database,

— the determination of the optimal class (i.e. word or word sequences)
is computationally very cheap and does not depended on the amount
of training data.
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Bayes decision rule

e The goal is determine the optimal word sequence given a feature vector

sequence.

e This can be done by maximizing the conditional probability:

~N
w,

N|.,.T
arg max p(w;y |z7)

w;
p(wy)p(a] |wi')
arg max T
w1’ p(x1)
argmax  p(wy') p(x7 |wy')
language model acoustic model
(31)
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Language models

e A statistical language model (SLM) assigns a probability to a sequence of
words p(wM).

e It is a crucial component in many speech and spoken language processing
disciplines such as
— speech recognition,
— spoken language understanding,
— machine translation,
— syntactic tagging and parsing.

e Due to data sparseness, context is taken into account in a varying degree
(unigram SLM, bigram SLM, trigram SLM, ngram SLM).
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M-gram SLM

e When we do not apply any model assumptions, i.e., the language model

takes arbitrary context into account, we have

glwv

p(wy’ ™) p(w p(w?) p(w:)

@ASH ) = ﬁASH ) - ﬁA\Ew\HIHv ) ﬁA\Ew\slmv o ﬁASwV p(w1)
_ p)  p(wy’)  p(w?) - p(w))
p(wy ") p(wy’"?)  p(w)
= p(wm|wy ™) - plwar—1|wy’ 7?) -+ - p(w2|wy) - p(wy)
= || p(wm|wi*™) (32)
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Unigram SLM

e A unigram SLM takes no context knowledge into consideration.

e That is, the probability of a word w,,, is independent of its predecessors
(wm—1, etc.) and successors (w,,+1, etc.).

e Repectively, we have

p(wy') = || plwm) (33)
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Bigram SLM

e A bigram SLM takes knowledge about a word’s predecessor into
consideration.

e That is, the probability of a word w,,, depends on its single predecessor
Wm—1-

e Repectively, we have
M

p(wy’) = p(wi) || p(wm|wm_1) (34)

m=2
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Trigram SLM

e A trigram SLM takes knowledge about a word’s two closest predecessors
into consideration.

e That is, the probability of a word w,,, depends on the predecessors w,,,_1

and Wm—2-

e Repectively, we have
M
p(w) = p(wi)p(wzlwr) || p(wmlwm—z, wm_1) (35)

m=3
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Smoothing

In an n-gram model, the probabilities p(w.,,|wm—nt1s..., Wm—1) are
estimated based on counts of the word sequence w7 ., occurring in a
training corpus.

The larger the n-gram order, the more likely it is that these counts
happen to be zero making the total probability ﬁASw\J equal to zero.

The fact that we have no encountered certain (combinations of) words
does not mean they do not exist, it may just be that our training corpus
is too sparse.

A technique to overcome this effect is smoothing which discounts some
of the probability mass of observed word sequences and assigns it to
unobserved ones.

Popular smoothing techniques include

— absolute discounting (ngrams)

— leaving-one-out (ngrams)
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Absolute discounting

e This technique copes with sparseness of ngram counts.

e Due to the exponential explosion of possible ngrams with growing order
n, data gets sparser and sparser as well.

e Consequently, an approach is to back off the ngram order in case of zero
probabilities.

e Absolute discounting discounts non-zero probabilities by an absolute
value 3,, and redistributes the probability mass to unseen events backing
off by one ngram order:

1 NQASS_@CS t\THv o \@t for NQASS_@CS t\_le >0

/ m—1
P (Wm|w,—, 1) = = (36)
MR F ) Bup! (Wi |w™ .12)  otherwise
with the normalization constant F'.

e (3, can be determined based on heuristics or trained on a development
set.
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Leaving-one-out

e In contrast to absolute discounting, this technique linearly combines the
probabilities of all ngram counts down to the unigram for the given

history:
P’ (Wi |w,, — t._Lv = M AuP (Wi | Wy, — t._Lv with M Ap = 1. (37)

e Again, )\, can be determined based on heuristics (e.g. by discounting
non-zero counts of observed events by one—“leaving one out”) or trained
on a development set.
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Hidden Markov models

e Now, we want to investigate how we can generate the acoustic model
TN
p(zy |wy").

e An idea is to represent the acoustic atomic parts in the word sequence
(sounds, phonemes) by states of a (stochastic) finite state machine.

e That is, for each feature vector x; we have a corresponding state s;
which is, however, unknown (hidden).

e Invoking all possible hidden state sequences mw. the sought-after model
can be written as

p(z]|wy) =) p(x],s] |wy). (38)
with
T
p(z],s1|wy) = || p(xe, selxi ™", s, wy) (39)
t=1

(see M-gram model for a prove of a similar equivalence).
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Hidden Markov models: model assumptions

e To render the model tractable, as in the case of the language model,
several simplifications are assumed.

e It is assumed that the hidden phonetic states model the time
dependence sufficiently, so, the additional time dependence between the

feature vectors is dropped:

@AHS mﬁ_H Hw mwlﬁ w4 v I@ASS mﬁ_m “\EH v Ahov

e Furthermore, time dependence is restricted to the predecessor state:

p(xs, s¢|s% H,\SWN = ﬁAH?mﬁ_mﬁITSM/N
B p(zts 8¢ 1, w7) ﬁﬁmﬁ 1 WT)
B p(st—1, w7 ) ﬁAmﬁ 1 W)
_ p(xts 8¢ WY ) ﬁAmﬁ W)
B p(sf_q,wy) p(st—1, w7y )
= 1 p(x|st_,,wy v : %Amﬁ_mﬁlf \EWNW (41)

~/ ~~

emmission probability transition probability
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Notes for the presentations

e important dates:

proposal due | April 29

presentations | May 15

e Generally, proposals are expected to cover one of the areas discussed at
the very beginning of the lecture excluding the highlighted ones.

e Please submit your proposals to all of the following e-mail addresses:

david@suendermann.com
david@speechcycle.com

suendermann@dhbw-stuttgart.de

e Presentations are to be in English and have a duration of 20 minutes.
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