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Abstract

A medical scribe is a clinical professional who
charts patient–physician encounters in real
time, relieving physicians of most of their ad-
ministrative burden and substantially increas-
ing productivity and job satisfaction. We
present a complete implementation of an au-
tomated medical scribe. Our system can serve
either as a scalable, standardized, and econom-
ical alternative to human scribes; or as an as-
sistive tool for them, providing a first draft of a
report along with a convenient means to mod-
ify it. This solution is, to our knowledge, the
first automated scribe ever presented and re-
lies upon multiple speech and language tech-
nologies, including speaker diarization, medi-
cal speech recognition, knowledge extraction,
and natural language generation.

1 Introduction

A recent study from the University of Wisconsin
concluded that primary care physicians spend al-
most two hours on tasks related to electronic med-
ical record (EMR) systems for every one hour of
direct patient care (Arndt et al., 2017). This result
illustrates the omnipresent complaint that medical
practitioners are overly burdened by the adminis-
trative overhead of their work.

One solution to this issue is to have someone
other than the physician take care of most of the
EMR-related work associated with patient care. In
particular, a medical scribe assumes the role of a
clinical paraprofessional entering information into
and, in some cases, extracting required informa-
tion from EMR systems during patient–physician
encounters (Earls et al., 2017). Scribes produce
data entries in real time, entering narrative and dis-
crete data points into templates of the EMR sys-
tem. They can be either physically present in the
physician’s office or connected through phone or
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internet, interacting with the EMR system offline
or by way of remote desktop connections. The lat-
ter are referred to as “virtual scribes.”

Several studies show that the use of human
scribes saves physicians substantial time on doc-
umentation, improves their work-life balance, and
enhances clinicians’ productivity. The resulting
revenue increase has the potential to be multiple
times higher than the cost of the scribe (Koshy
et al., 2010; Bastani et al., 2014; Earls et al., 2017).

Despite these considerable advantages, there
are some drawbacks to using medical scribes:

• scribes require extended training time and
cost before developing their full potential—
e.g., Walker et al. (2016) found the average
training cost to be $6,317;

• scribes are often medical or premedical stu-
dents (Walker et al., 2016) who, after being
sufficiently exposed to the training experi-
ence the position of a scribe offers, tend to
move on to attend medical school full time1;
this fast-paced turnover in conjunction with
the aforementioned training time and cost
greatly reduces their effectiveness;

• scribes are costly: Earls et al. (2017) states
that their scribes are paid $39,750 p.a.;
Walker et al. (2016) quotes an average salary
of $15.91 per hour for their virtual scribes
which equals approximately $29,000 p.a.;
Brady and Shariff (2013) estimates the an-
nual cost of an on-site scribe to be $49,000
and for a virtual scribe $23,000.

In order to mitigate these disadvantages while pre-
serving the strengths of employing scribes in the

1E.g., Stanford University’s scribe program is purpose-
fully limited to 12 months and is designed to prepare future
medical students (Lin et al., 2017).

11



first place, we have developed a fully automated
scribe, a prototype of which is presented here. It
makes use of a full stack of state-of-the-art speech
and natural language processing (NLP) compo-
nents which are concisely described in this paper.
To the best of the authors’ knowledge, this is the
very first automated scribe implementation ever
presented to the scientific community.

We see at least two main avenues for deploy-
ing this technology. The first is to serve as a di-
rect stand-in for human scribes—useful in cases
where hiring scribes is either economically or lo-
gistically infeasible. In this case, the output of our
system would be subject to review and correction
by the physician. The second is as an assistive tool
to (human) virtual scribes: our system displays
an inital draft of the report and a summary of the
information present in the conversation. The vir-
tual scribe will be able to make any necessary cor-
rections either to this information, in which case
the report can be re-generated, or directly to the
text. Either way, the availability of our automated
system promises to streamline the human scribe’s
work and increase their throughput dramatically.
Note that a similar workflow is commonplace for
transcribing dictated clinical reports: the dictation
is passed through an automatic speech recognition
(ASR) and formatting system, then manually cor-
rected by professional transcriptionists off-site.

2 Design

The automated scribe features a linear processing
pipeline of speech-processing modules followed
by NLP modules. We briefly introduce and moti-
vate all modules in this section, then describe each
individually in the following sections.

The initial stages transform the recorded con-
versation into a text format: first, a speaker
diarization module determines who is speaking
when and uses this information to break the audio
recording into segments coded for speaker, which
are then passed through a medical ASR stage.
These steps are described in Sections 3 and 4.

Following ASR, the scribe must convert a tran-
scribed spontaneous conversation into a concise
and fully formatted report. This goal is exem-
plified in Figure 1, which shows an excerpt of a
conversation and its realization in the report. The
system does not perform this translation directly—
this would require enormous amounts of parallel
data to solve, end to end, with any single tech-

nique. Instead, we employ a two-stage approach
in which the scribe mines the conversation for in-
formation and saves it in a structured format, then
exports this structured data to the final report. In
this way, the bulk of the NLP work is divided into
two well-studied problems: knowledge extraction
(KE; Section 5) and natural language generation
(NLG; Section 7). (Between these two stages,
structured data is processed directly to prepare it
for export [Section 6].) Generating structured data
as an intermediate step has numerous other advan-
tages: it can be kept in the patient’s history for
reference to improve results on future episodes; it
can be used by other systems that process struc-
tured data (e.g. billing, decision support); and it
can be corrected manually if needed, which can be
less error-prone than correcting final text directly.

3 Speaker diarization

Speaker diarization is the “who spoke when” prob-
lem, also called speaker indexing (Wellekens,
2001; Miró et al., 2012; Moattar and Homayoun-
pour, 2012). The input is audio features sampled
at 100 Hz frame rate, and the output is frame-
labels indicating speaker identify for each frame.
Four labels are possible: speaker 1 (e.g. the doc-
tor), speaker 2 (e.g. the patient), overlap (both
speakers), and silence (within-speaker pauses and
between-speaker gaps). Note that the great ma-
jority of doctor-patient encounters involve exactly
two speakers. Although our method is easily gen-
eralizable to more speakers, we currently report on
the two-speaker problem.

The diarization literature broadly distinguishes
“bottom-up” vs. “top-down” approaches. The for-
mer (Gish et al., 1991) operate by merging neigh-
boring frames by similarity (clustering); we found
initial results unsatisfactory. The later operate
with a prior model such as HMM–GMM (Hidden
Markov, Gaussian mixture model) to represent the
likely audio features and timing (transition) char-
acteristics of dialogs. We have introduced our own
top-down approach that utilizes a modified expec-
tation maximization (EM) algorithm at decoding
time to learn the current speaker and background
silence characteristics in real time. It is coded in
plain C for maximum efficiency and currently op-
erates at ∼50 × real-time factor.

Diarization requires an expanded set of audio
features compared to ASR. In ASR, only phoneme
identity is of final interest, and so audio features
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Conversation Report

Dr: “okay great and in terms of your past medical history do you
have any other medical conditions you have”

FAMILY MEDICAL HISTORY
The patient’s aunt had lung cancer.

Pt: “no i have not had any medical conditions but my auntie actually
she had lung cancer so that’s why i kind of. . . ”

Figure 1: An excerpt from a typical input and output for the NLP segment of the scribe. Note that the ASR output
has no punctuation or case; the doctor (‘Dr.’) and patient (‘Pt.’) identifiers illustrate the contribution of the diarizer.

are generally insensitive to speaker characteris-
tics. By contrast, in diarization, only speaker iden-
tity is of final interest. Also note that diariza-
tion performs a de facto speech activity detection
(SAD), since states 1–3 vs. state 4 are speech vs.
silence. Therefore features successful for SAD
(Sadjadi and Hansen, 2013) are helpful to diariza-
tion as well. Accordingly, we use an expanded set
of gammatone-based audio features for the total
SAD + diarization + ASR problem (details to be
reported elsewhere).

4 Speech recognition

ASR operates on the audio segments produced by
the diarization stage, where each segment con-
tains one conversational turn (1 speaker + possi-
bly a few frames of overlap). Currently, the di-
arization and ASR stages are strictly separated and
the ASR decoding operates by the same neural
network (NN) methodology that we recently re-
ported for general medical ASR (Edwards et al.,
2017). In brief, the acoustic model (AM) con-
sists of a NN trained to predict context-sensitive
phones from the audio features; and the language
model (LM) is a 3- or 4-gram statistical LM pre-
pared with methods of interpolation and pruning
that we developed to address the massive medical-
vocabulary challenge. Decoding operates in real
time by use of weighted finite-state transducer
(WFST) methodology (Mohri et al., 2002; Al-
lauzen et al., 2007; Povey et al., 2011) coded in
C++. Our current challenge is to adapt the AM and
LM to medical conversations, which have some-
what different statistics compared to dictations.

5 Knowledge extraction

Extracting information from spontaneous conver-
sational speech is a notoriously difficult prob-
lem. There has been some recent work on extract-
ing keywords (Habibi and Popescu-Belis, 2013)
or facts such as biographical details (Jing et al.,
2007), but it is unclear whether known methods
are effective for clinical conversation specifically.

We apply a novel strategy to simplify the KE
problem by tagging sentences and turns in the
conversation based upon the information they are
likely to contain. These classes overlap largely
with sections in the final report—chief complaint,
medical history, etc. Then, we apply a variety of
strategies, depending on the type of information
being extracted, on filtered sections of text.

We use hierarchical recurrent neural networks
(RNNs) to tag turns and sentences with their pre-
dicted class; each sentence is represented by a
single vector encoded by a word-level RNN with
an attention mechanism. (Our approach is simi-
lar to the influential document classification strat-
egy of Yang et al. (2016), although we classify the
sentences individually rather than the entire docu-
ment.) In most cases, we can generate a sentence
vector from an entire speech turn; for longer turns,
however, we have to detect sentence boundaries.
This is essentially a punctuation restoration task,
which we have successfully undertaken previously
using RNNs with attention (Salloum et al., 2017).

To extract information from tagged sentences,
we apply one or more of several strategies:

• Complete or partial string match to identify
terms from ontologies. This is effective for
concepts which do not vary much in repre-
sentation, such as certain medications.

• Extractive rules using regular expressions,
which are well suited to predictable elements
such as medication dosages, or certain tem-
poral expressions (e.g. dates and durations).

• Other unsupervised or knowledge-based
strategies, such as Lesk-style approaches
(Lesk, 1986) in which semantic overlap with
dictionary definitions of terms is used to nor-
malize semantically equivalent phrases, as
has been done successfully for medical con-
cepts (Melton et al., 2010). This might be
suitable for concepts that usually vary in ex-
pression, such as descriptions of symptoms.
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• Fully supervised machine learning ap-
proaches, which we employ for difficult
or highly specialized tasks—for example,
identifying when a patient complains of
symptoms generally worsening.

The KE stage also relies on extractive summary
techniques where necessary, in which entire sen-
tences may be copied directly if they refer to in-
formation that is relevant but difficult to represent
in our structured type system—for example, a de-
scription of how a patient sustained a workplace
injury. (To handle such cases using natural lan-
guage understanding is a highly complex problem
requiring a domain-general solution, which is be-
yond the scope of the medical scribe.) At a later
stage, extracted text is processed to fit seamlessly
into the final report (e.g. changing pronouns).

6 Processing structured data

Following the information extraction stage is a
module which performs several functions to val-
idate the structured knowledge and prepare it for
NLG. This often entails correcting for any gaps
or inconsistencies in the extracted knowledge, as
may occur when there is critical information that
is not explicitly mentioned during the encounter
(as is frequently the case), or if there are errors in
diarization, ASR, or KE. Typically, problems can
be resolved through a series of logical checks or
by relying on other structured data in the patient’s
history (when available). If not, conflicts or grave
omissions can be flagged for the user.

Wherever appropriate, data is also encoded in
structures compatible with the HL7 FHIR v3 stan-
dard (Bender and Sartipi, 2013) to facilitate inter-
operability with other systems. As a concrete ex-
ample, if the physician states an intent to prescribe
a medication, a FHIR MedicationRequest resource
is generated. The output of this stage can be made
available to the user if he or she wishes to amend
the structured information, and any changes can be
propagated instantly to NLG.

7 Natural language generation

The NLG module produces and formats the final
report. Medical reports follow a loosely standard-
ized format, with sections appearing in a gener-
ally predictable order and with well-defined con-
tent within each section. Our strategy is a data-
driven templatic approach supported by a finite-
state “grammar” of report structure.

The template bank consists of sentence tem-
plates annotated for the structured data types nec-
essary to complete them. We fill this bank by clus-
tering sentences from a large corpus of medical re-
ports according to semantic and syntactic similar-
ity. The results of this stage are manually curated
to ensure that strange or imprecise sentences can-
not be generated by the system, and to ensure par-
simony in the resulting type system. Kondadadi
et al. (2013) employ a similar method of cluster-
ing and manual review to quickly and effectively
generate a full template bank from data.

Using the same reports, we induce the grammar
using a probabilistic finite-state graph, where each
arc outputs a sentence and a single path through
the graph represents one actual or possible report.
Decoding optimizes the maximal use of structured
data and the likelihood of the path chosen. The
grammar helps to improve upon one common crit-
icism of templatic NLG approaches, which is the
lack of variation in sentences (van Deemter et al.,
2005), in a way that does not require any “infla-
tion” of the template bank with synonyms or para-
phrases: during decoding, different semantically
equivalent templates may be selected based on
context and the set of available facts, thus replicat-
ing the flow of natural language in existing notes.

Note that, as format can vary considerably by
note type, specialty, and healthcare provider, we
build separate NLG models to handle each type of
output.

Finally, all notes pass through a processor that
handles reference and anaphora (e.g. replacing
some references to the patient with gender pro-
nouns), truecasing, formatting, etc.

8 Conclusion

The presented automated scribe can take over or
supplement the role of human scribes document-
ing encounters between patients and physicians.
At the current stage, the system is still limited in its
functionality and scope, and major enhancements
are being made to improve performance and con-
tent coverage of several of the involved compo-
nents. In particular, we plan to expand the use
of machine learning techniques as soon as enough
data has been accumulated in various pilot studies
currently underway. Additionally, we are working
to compile a large set of parallel inputs and out-
puts to allow for a true end-to-end evaluation of
the system.
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XA Miró, S Bozonnet, N Evans, C Fredouille, G Fried-
land, and O Vinyals. 2012. Speaker diarization: a re-
view of recent research. IEEE Trans Audio Speech
Lang Process, 20(2):356–370.

MH Moattar and MM Homayounpour. 2012. A re-
view on speaker diarization systems and approaches.
Speech Commun, 54(10):1065–1103.

M Mohri, FCN Pereira, and M Riley. 2002. Weighted
finite-state transducers in speech recognition. Com-
put Speech Lang, 16(1):69–88.

D Povey, G Boulianne, L Burget, O Glembek,
NK Goel, M Hannemann, P Motlı́cek, Y Qian,
P Schwarz, and J Silovsky. 2011. The Kaldi speech
recognition toolkit. In Proc ASRU, pages 1–4. IEEE.

SO Sadjadi and JHL Hansen. 2013. Unsupervised
speech activity detection using voicing measures
and perceptual spectral flux. IEEE Signal Process
Lett, 20(3):197–200.

W Salloum, GP Finley, E Edwards, M Miller, and
D Suendermann-Oeft. 2017. Deep learning for
punctuation restoration in medical reports. In Proc
Workshop BioNLP, pages 159–164. ACL.

KJ Walker, W Dunlop, D Liew, MP Staples, M John-
son, M Ben-Meir, HG Rodda, I Turner, and
D Phillips. 2016. An economic evaluation of the
costs of training a medical scribe to work in emer-
gency medicine. Emerg Med J, 33(12):865–869.

CJ Wellekens. 2001. Seamless navigation in audio
files. In Proc Odyssey, pages 9–12. ISCA.

Z Yang, D Yang, C Dyer, X He, A Smola, and E Hovy.
2016. Hierarchical attention networks for document
classification. In Proc NAACL-HLT, pages 1480–
1490. ACL.

15


