General notes

When calculating results using Octave, please provide code snippets by writing them on your worksheet. This is crucial for me to understand how you came up with your solution.

1 Conditional probabilities and Bayes' rule

(15 pts)

An approach to vowel classification is to determine the frequencies of the first two formants in the spectrogram $(f_1 \text{ and } f_2)$ and identify the best-matching vowel w.r.t. some training data. In a given training corpus, a number of sample recordings of the five vowels (a,e,i,o,u) have been analyzed and categorized into ranges of f_1 and f_2 . The following table shows how many samples were associated with which range and which vowel in the corpus:

ID	$f_{1,min}[\mathrm{Hz}]$	$f_{1,max}[Hz]$	$f_{2,min}[\text{Hz}]$	$f_{2,max}[Hz]$	n_a	n_e	n_i	n_o	n_u
1	0	400	0	1200	0	3	1	5	7
2	0	400	1200	2000	8	7	6	5	0
3	0	400	2000	∞	1	6	7	0	5
4	400	800	0	1200	3	5	1	$\overline{7}$	2
5	400	800	1200	2000	9	6	7	9	0
6	400	800	1200	∞	5	7	4	1	3
7	800	∞	0	1200	9	9	1	3	8
8	800	∞	1200	2000	9	8	7	0	5
9	800	∞	1200	∞	5	0	1	1	5

In a field test, the following formant sequence was observed:

$$\begin{aligned} f_1^8 &= \begin{pmatrix} f_{1,1} \\ f_{2,1} \end{pmatrix}, \cdots, \begin{pmatrix} f_{1,8} \\ f_{2,8} \end{pmatrix} \\ &= \begin{pmatrix} 530 \\ 991 \end{pmatrix}, \begin{pmatrix} 1044 \\ 1960 \end{pmatrix}, \begin{pmatrix} 901 \\ 1977 \end{pmatrix}, \begin{pmatrix} 720 \\ 823 \end{pmatrix}, \begin{pmatrix} 235 \\ 728 \end{pmatrix}, \begin{pmatrix} 622 \\ 745 \end{pmatrix}, \begin{pmatrix} 371 \\ 590 \end{pmatrix}, \begin{pmatrix} 611 \\ 725 \end{pmatrix} [\text{Hz}] \end{aligned}$$

a) What is the most likely vowel sequence $v_{1(a)}^8$ associated with f_1^8 ? Hint: First determine the ID sequence matching the formant sequence f_1^8 .

The vowel classifier is supposed to be used as input interface for the 1986 IBM PC version of the game Tetris (as seen in the screenshot below). In order for this to work, the following association between vowels and actions is used:

v	action
е	l <i>e</i> ft
i	r <i>i</i> ght
a	rot <i>a</i> te
0	dr <i>o</i> p

b) Considering the Tetris scenario, what is the most likely vowel sequence $v_{1(b)}^8$ associated with f_1^8 ?

From a vast number of games, statistics of game actions are available (n is the number of tokens observed per action):

n/1000	action
918	left
927	right
754	rotate
118	drop

c) Considering the Tetris scenario and the game action statistics, what is the most likely vowel sequence $v_{1(c)}^8$ associated with f_1^8 ?

2 Regression (15 pts)

The following table shows historic crude oil prices per barrel:

year	2000	2001	2002	2003	2004	2005	2006	2007
price [US\$]	28.5	24.4	25.0	28.8	38.2	54.5	65.1	72.3

Consider the regression functions (you should use x = year - 2000 to avoid machine precision issues):

- a) $y_a = w_0 + w_1 x$,
- b) polynomial regression y_b with D = 2,
- c) polynomial regression y_c with D = 7,
- d) $y_d = w_0 + w_1 \sin\left(\frac{\pi}{4}x\right) + w_2 \sin\left(\frac{\pi}{4}(x+2)\right),$

e) $y_e = w_0 + w_1 e^{\frac{x}{2}}$.

Given the above data of historic crude oil prices,

- i) train linear regression models for each of the functions y_a, \ldots, y_e and calculate the models' empirical risks R_a, \ldots, R_e .
- ii) Predict the average oil price for 2013 with each of the models.
- iii) Which of the models fits the data best? Justify your answer.
- iv) Which of the models fits the data worst? Justify your answer.

3 Bayesian networks (6 pts)

We are given the following Bayesian network:

Which of the following equations are correct w.r.t. this network? Which ones are wrong?

$$p(x_1, x_2) = p(x_1|y_1)p(x_2|y_1, y_2)$$
(1)

$$p(x_2) = \frac{p(x_1, x_2, y_1, y_2)}{p(x_1, y_1, y_2)}$$
(2)

$$p(y_2|y_1) = \frac{p(y_1|y_2)p(y_1)}{p(y_2)}$$
(3)

$$0 < \sum_{y \in Y_2} p(y_2 = y) < 1 \tag{4}$$

$$\max_{x_1} p(x_1|y_1) = \max_{x_1} p(y_1|x_1)p(x_1)$$
(5)

$$\operatorname*{arg\,max}_{x_1} p(x_1|y_1) = \operatorname*{arg\,max}_{x_1} c \cdot p(y_1|x_1) p(x_1) \quad \text{with} \quad c \in \mathbb{R}$$
(6)

Justify your answers. Hint: Y_2 is the set of all values the random variable y_2 can assume.

4 Naïve Bayes (20 pts)

A brand-new application to classification is to tell whether individuals are drunk or sober by analyzing speech data they are uttering. These are (Boolean) features extracted by the signal processing unit of an example implementation:

i	feature
1	high energy
2	high energy variance
3	high pitch
4	high pitch variance
5	high gitter
6	high shimmer
7	high speaking rate
8	affected by Lombard distortion
9	the word "please" is present
10	the word " f^{***} " is present

To train the classifier, n(1) utterances have been manually marked as drunk (d = 1) and n(0) as sober (d = 0). The following table shows how many of each feature were found to be true for both of the scenarios:

d	n(d)	$n_1(d)$	$n_2(d)$	$n_3(d)$	$n_4(d)$	$n_5(d)$	$n_6(d)$	$n_7(d)$	$n_8(d)$	$n_9(d)$	$n_{10}(d)$
0	550	0	1	450	332	510	250	87	390	219	0
1	110	75	73	1	2	75	56	9	58	0	91

Build a naïve Bayes classifier.

a) Classify the following test samples:

$$\begin{array}{rcl} x_1 &=& (1,1,0,0,0,0,0,1,1,1,1) \\ x_2 &=& (1,1,1,1,1,0,1,1,0) \\ x_3 &=& (0,1,0,1,1,1,0,1,0,1) \end{array}$$

In doing so, use a smoothing approach that replaces zero counts by a constant $\alpha = 1$.

b) Now, use a smoothing approach which increments every count by a constant $\beta = 1$. How do classification results change?