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. General remarks .

• The most up-to-date version of this document as well as auxiliary

material can be found online at

http://suendermann.com

• For many of the exercises we will be using the programming language

Octave available from

http://www.gnu.org/software/octave/

Please install and bring your laptops to class.

• Andrew Ng from the Standford Artificial Intelligence Lab will give an

extensive online lecture starting in October. Details at

http://www.ml-class.com/
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. Machine Learning in Computer Science .

• Machine learning is related to many disciplines in computer science

inluding

– artificial intelligence

– pattern recognition

– natural language processing (NLP)

– speech and audio processing

– image processing

– robotics

– financial modeling

– planning
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. Major tasks of ML .

• ML is to automatically

– identify patterns in data or

– make decisions based on data.

• Technically speaking, the major tasks of ML are

– classification,

– regression, and

– clustering.
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. Classification .

• Classification is to identify which of N classes an entity x (a data point)

belongs to.

• The feature vector x⃗ is composed of return values of feature functions

that depend on x:

x⃗ =


f1(x)

...

fn(x)

 (1)

• In some cases, the entity x is a vector by itself, so x⃗ could be composed

of its components:

x⃗ =


x1

...

xn

 (2)
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. Example feature function in vowel classification: f1, f2 .
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. Target values .

• In addition to the data point x, supervised techniques make use of a

target value t.

• In classification, t represents the class of x.

• Accordingly, the goal of classification is to identify a function y such that

y(x) = t. (3)

• To come up with a function y that returns the correct t most of the

time, we have to find

– powerful features turning x into x⃗ and

– a powerful vector classification technique turning x⃗ into t.
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. Classification: example .
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. Classification: example .
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. Regression .

• Classification attempts to predict one class out of a finite and discrete

set of classes given x.

• In contrast, regression attempts to predict a continuous variable given x.

• Accordingly, the goal of regression is to identify a function y such that

y(x) = t. (4)

• The goals of classification and regression are identical, so, what is the

difference?

• The main difference is how to evaluate performance.

• In classification, a prediction is either identical to the ground truth or

not, i.e., it is correct or wrong.

• In regression, a prediction has a distance from the ground truth, i.e., it

features a continuous degree of correctness.
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. Regression: example .

?
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. Regression: example .
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. Clustering .

• Clustering is an unsupervised task.

• Hence, we do not have target values.

• The goal is to identify groups of similar data points that are dissimilar to

others.

• Technically speaking, we want to find a partition of the data such that

1. Points in the same cluster are similar.

2. Points in different clusters are dissimilar.

• The challenge is to define (dis)similarity for a given type of data.
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. Clustering: example .
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. Clustering: example .
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. Clustering: example .
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. Classical artificial intelligence .

• Classical artificial intelligence (AI) is based in determinism (rules).

• Examples include

– expert systems (−→ Knowledge-Based Systems)

– theorem provers (−→ Logic; Knowledge-Based Systems)

– Shakey the robot

– Deep Blue
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. Shakey the robot .

• first general-purpose robot able to reason about

its actions

• developed between 1966 and 1972 at Standford

Research Institute (SRI)

• combined research in robotics, image processing,

and NLP

• programmed in LISP

• Sample task:

push the block off the platform

• A research results was the A∗ search algorithm

(−→ Knowledge-Based Systems).

• pic:

– source: http://www.flickr.com/photos/15965815@N00/352902842/

– author: Marshall Astor

– license: Creative Commons Attribution-Share Alike 2.0 Generic
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. Deep Blue .

• chess-playing computer by IBM

• On May 11, 1997, Deep Blue won a six-

game match against Garry Kasparov.

• based on brute-force computing power

(30 nodes with 480 VLSI chess chips)

• written in C under AIX

• The evaluation function contained mul-

tiple parameters tuned on 700,000

grandmaster games.

• pic:

– source: http://flickr.com/photos/22453761@N00/592436598/

– author: James the photographer

– license: Creative Commons Attribution 2.0 Generic
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. Modern AI .

• Modern AI is based in statistical modeling (probabilities).

• Examples include

– web search

– speech recognition

– machine translation (MT)

– optical character recognition

– ASIMO

– Watson
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. ASIMO .

• a humanoid robot by Honda

• stands at 130cm and weighs 54kg

• runs @6km/h on two feet (2005)

• AI technology integrated:

– detects moving objects

– interprets postures, gestures,

and voice commands

– faces people when spoken to

– facial recognition of ≤10 fa-

ces; addresses people by name

• pic:

– source:

http://upload.wikimedia.org/wikipedia/commons/0/05/

HONDA ASIMO.jpg

– author: Gnsin

– license: Creative Commons Attribution-Share Ali-

ke 3.0 Unported
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. Watson .

• Watson is an AI computer system from IBM for question answering.

• It combines applications of

– machine learning,

– NLP,

– information retrieval,

– knowledge representation,

– reasoning.

• To showcase its abilities, in February 2011, Watson competed on the

show Jeopardy! against the human champions and won.

• During the quiz, Watson had no access to the Internet.

• It had access to 200M pages of structured and unstructured data

(including a copy of the entire Wikipedia), amounting to 4TB.

• Hardware consisted of

– 90 IBM Power 750 servers with 2880 processors and 16TB of RAM.
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. Watson: architecture .
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• pic:
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– author: Pgr94

– license: Creative Commons CC0 1.0 Universal Public Domain Dedication

D. Suendermann-Oeft Machine Learning October 17, 2013 29



. Outline .

1. introduction

2. probability and statistics

3. linear regression

4. neural networks

5. Bayesian networks

6. hidden-Markov models

7. decision trees

8. boosting

9. homework

D. Suendermann-Oeft Machine Learning October 17, 2013 30



. Introduction into probability theory .

• Suppose we have a blue (b) and a red (r) box.

• In the blue box, there are 2 apples (a) and 6 oranges (o).

• In the red box, there are 3 apples and 1 orange.

• Suppose, we draw each fruit token with the same probability.

• We consider box B and fruit F to be random variables.

• B can have the values b and r.

• F can have the values a and o.

• These are questions we want to answer:

– What is the probability of picking an apple?

– Given I chose an orange, what is the probability that it was drawn

from the blue box?
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. Introduction into probability theory (cont.) .

• The probability p of an event is the fraction of time the event occurs out

of some number of trials approaching infinity.

• 0 ≤ p ≤ 1

• Events that cannot cooccur are called mutually exclusive.

• Probabilities of mutually exclusive events sum up to 1.

• If two events x and y are independent, we have

p(x, y) = p(x)p(y) (5)

and

p(x|y) = p(x). (6)
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. Introduction into probability theory (cont.) .

• Count table

from our example:

a o Σ

b 2 6 8

r 3 1 4

Σ 5 7 12

generalized:

xi

yj nij rj =
∑

i nij

ci =
∑

j nij N =
∑

i

∑
j nij
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. Joint probability .

• The joint probability describes how likely events occur simultaneously:

p(xi, yj) =
nij

N
. (7)

• E.g., selecting an orange from the blue box:

p(b, o) =
6

12
=

1

2
. (8)

• The probability of xi irrespective of yj is

p(xi) =
ci

N
=

∑
j nij

N
=
∑
j

p(xi, yi). (9)

• E.g., selecting the blue box:

p(b) = p(b, a) + p(b, o) =
1

6
+

1

2
=

2

3
. (10)
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. Conditional probability .

• We now limit our analysis only to events with xi and want to analyze the

fraction of these cooccurring with yj .

• This case is the conditional probability of yj given xi:

p(yj|xi) =
nij

ci
. (11)

• E.g., the probability of having chosen the blue box when eating an

orange:

p(b|o) =
6

7
. (12)

• We can express the joint probability in terms of conditional probabilities:

p(xi, yj) =
nij

N
=

nij

ci
·
ci

N
= p(yj|xi)p(xi). (13)
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. Rules .

• Generalizing from the probability p(xi) of a particular value xi, we get a

probability distribution p(X) of the random variable X.

• Now, we can derive

– the sum rule (from Equation 9):

p(X) =
∑
Y

p(X,Y ), (14)

– the product rule (from Equation 13):

p(X,Y ) = p(Y |X)p(X), (15)

– Bayes’ rule (from double application of Equation 15):

p(Y |X) =
p(X|Y )p(Y )

p(X)
. (16)
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. Prior and posterior probabilities .

• We want to look one more time at the question

Given I chose an orange, what is the probability that it was drawn

from the blue box?

• Before knowing which fruit I chose, the probability distribution of chosing

boxes was P (B) (prior probability).

• After chosing a fuit (F ), the probability distribution of chosing boxes

changed to P (B|F ) (posterior probability).

• In our example, we have the prior

p(b) =
2

3
(17)

and the posterior

p(b|o) =
6

7
. (18)

• That is, the probability that the box was blue increased after observing o.
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. Conditional probabilities and Bayes’ rule: exercise .

• A probabilistic MT system is to translate an Urdu (U) source sentence

into English (E).

• We are given the following count tables:

translation model

u1 u2 u3 u4

e1 0 1 0 1

e2 1 1 1 0

e3 1 0 1 0

e4 0 1 38 0

e5 0 0 1 0

language model for U

u1 u2 u3 u4

15 632 52 23

language model for E

e1 e2 e3 e4 e5

450 891 586 899 7638

• The MT system uses a smoothing strategy replacing zero counts in the

count table by 0.5 to prevent unlikely events to be suppressed.
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. Conditional probabilities and Bayes’ rule: exercise (cont.) .

• What is the best translation of the sentences

a) u3 and

b) u4

using

I) simple posterior probabilities,

II) Bayes’ rule?
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. Continuous probability .

• So far, we talked about discrete probability.

• That is, X can take one out of a finite set of discrete values (x1, . . . , xI).

• If X becomes continuous, there are infinitely many different values, so,

the probability of a specific value may approach zero.

• Hence, we introduce the notion of a probability density function (PDF)

p(x).

• We can calculate the probability that x falls in an interval (x0, x1) using

the definite integral

p(x ∈ (x0, x1)) =

x1∫
x0

p(x)dx. (19)

• A special case is the cumulative density function (CDF) P (x) :

P (x) =

x∫
−∞

f(u)du. (20)
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. PDF: examples .
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. CDF: examples .
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. Continuous probability: properties .

• range of values:
∞∫

−∞

p(x)dx = P (∞) = 1; p(x) ≥ 0 (21)

• sum rule:

p(x) =

∞∫
−∞

p(x, y)dy (22)

• product rule:

p(x, y) = p(y|x)p(x) (23)

• Bayes’ rule:

p(y|x) =
p(x|y)p(y)

p(x)
(24)
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. Expectation .

• The expected value or expectation of a random variable is

– for discrete distributions:

E(X) =
∑
x

xp(x) (25)

– for continuous distributions:

E(X) =

∞∫
−∞

xp(x)dx (26)

– theorems (X and Y are independent random variables):

E(XY ) = E(X)E(Y ) (27)

E(X + Y ) = E(X) + E(Y ) (28)
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. Expectation: exercise .

• We are rolling

a) one die,

b) two dice,

c) three dice.

• Assuming the random variable X is the sum of numbers obtained at each

roll, calculate

I) p(X),

II) E(X).

• Plot p(X) for a), b), and c). How do you think p(X) looks like for a

larger number of rolls?
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. Univariate normal distribution .

• univariate (one-dimensional) Gaussian/normal distribution:

N (x|µ, σ2) =
1

√
2πσ2

e−
(x−µ)2

2σ2 (29)

• pic:

– source: http://en.wikipedia.org/wiki/File:DEU-10m-anv.jpg

– author: Deutsche Bundesbank (banknote), European Central Bank (photo)

– permission: ECB/2003/4 and ECB/2003/5
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. Multivariate normal distribution .

• multivariate (D-dimensional) normal distribution:

N (x|µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

(
−1

2
(x − µ)′Σ−1(x − µ)

)
(30)

.

• pic:

– source:

http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png

– author: Ben FrantzDale

– license: GNU Free Documentation License 1.2
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. Expectation of the normal distribution .

• The expectation of the univariate normal distribution is

E(X) = E(Y + µ) with Y = X − µ (31)

= E(Y ) + µ (32)

=

∞∫
−∞

y
1

√
2πσ2

e−
y2

2σ2 dy + µ (33)

= −
σ2

√
2πσ2

∞∫
−∞

y
y

σ2
e−

y2

2σ2 dy + µ (34)

= −
σ2

√
2πσ2

[
e−

y2

2σ2

]∞
y=−∞

+ µ (35)

= µ. (36)
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. Variance .

• The variance expresses how broad is a distribution around its mean

(expectation):

Var(X) = E((X − E(X))2) (37)

= E((X − µ)2) (38)

= E(X2 − 2Xµ + µ2) (39)

= E(X2) − 2E(X)µ + µ2 (40)

= E(X2) − 2µ2 + µ2 (41)

= E(X2) − E(X)2 (42)
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. Variance: exercise .

• Calculate the variance of a univariant normal distribution.
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. Covariance .

• The covariance expresses how two random variables X and Y change

together.

• A special case of the covariance is the case that X = Y

Cov(X,Y ) = Var(X). (43)

• Another special case is when X and Y are independent where

Cov(X,Y ) = 0. (44)

• Generally, we have

Cov(X, ) = E((X − E(X))(Y − E(Y ))) (45)

= E((X − µx)(Y − µy)) (46)

= E(XY − Xµy − µxY + µxµy) (47)

= E(XY ) − E(X)µy − µxE(Y ) + µxµy (48)

= E(XY ) − µxµy − µxµy + µxµy (49)

= E(XY ) − E(X)E(Y ) (50)
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. Regression .

• The goal of regression is to learn a function y(x)

– for one-dimensional x:

y : R → R (51)

– for D-dimensional x:

y : RD → R (52)

• Since regression is a supervised technique, we are given

– the set of training data points x1, . . . , xN and

– the respective targets t1, . . . , tN .
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. Regression: example .

?
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. Regression: example .

?
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. Regression: example .
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. Linear regression .

• In linear regression, we assume the model generating t is based on a

linear combination of x⃗’s elements:

y(x⃗, w⃗) = wo + w1x1 + . . . + wDxD (53)

= w0 +
D∑

d=1

wdxd (54)

• Here, w⃗ is a vector of weights defining the parameters of the model.

D. Suendermann-Oeft Machine Learning October 17, 2013 57



. Error functions .

• We want to evaluate the performance of a given y.

• To this end, we need an error function (aka loss function).

• Typical error functions include

– square error:

E(ti, y(x⃗i, w⃗)) =
1

2
(ti − y(x⃗i, w⃗))2 (55)

– linear error:

E(ti, y(x⃗i, w⃗)) = |(ti − y(x⃗i, w⃗))| (56)

• The total (or mean) error is

E(t, y(x⃗, w⃗)) =
1

N

N∑
i=1

E(ti, y(x⃗i, w⃗)). (57)
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. Likelihood .

• Assume we were able to estimate the likelihood (probability) of a target t

given the input vector x⃗ and some model parameters w⃗:

p(t|x⃗, w⃗). (58)

• Then, we could optimize our model by maximizing the likelihood over all

possible parameterizations w⃗.

• Assume, we can partially differentiate p with respect the dimensions of

w⃗, then we could find a closed-form solution of w⃗’s optimum by setting

the gradient to zero.

• Assuming further that the likelihood follows a Gaussian distribution, i.e.,

if there were infinitely many targets for a given input vector x, they would

be normally distributed around a mean with a standard deviation σ.
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. Likelihood (cont.) .

• So, the likelihood of a target given a data point and a model is

p(ti|x⃗i, w⃗) = N (ti|y(x⃗i, w⃗), σ2). (59)

• Assuming data points are independent and identically distributed (iid),

we can write the likelihood of the entire observed data given a model as

p(t|x⃗, w⃗) =
N∏
i=1

N (ti|y(x⃗i, w⃗), σ2).

=

N∏
i=1

1
√
2πσ2

exp

(
−

(y(x⃗i, w⃗) − ti)
2

2σ2

)
. (60)
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. Log likelihood .

• For further considerations, we want to look at the log likelihood rather

than the likelihood itself.

• This is to resolve the product of powers into a sum.

• Since the natural logarithm is a monotonous function, ln(p(x)) has the

same location of extrema as p(x) given that p(x) > 0 (exercise: show

this!).

• This yields

ln(p(t|x⃗, w⃗)) = ln
N∏
i=1

1
√
2πσ2

exp

(
−

(y(x⃗i, w⃗) − ti)
2

2σ2

)

= −
1

2σ2

N∑
i=1

(y(x⃗i, w⃗) − ti)
2 − N ln

√
2πσ2 (61)
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. Gradient of log likelihood .

• To determine ln(p)’s gradient, we apply the del operator:

∇w⃗ ln(p(t|x⃗, w⃗)) = ∇w⃗

(
−

1

2σ2

N∑
i=1

(y(x⃗i, w⃗) − ti)
2 − N ln

√
2πσ2

)

= −
1

2σ2
∇w⃗

(
N∑
i=1

(y(x⃗i, w⃗) − ti)
2

)

= −
1

2σ2
∇w⃗R(w⃗). (62)

• R(w⃗) is called the empirical risk.

• To determine the maximum, we set the gradient to zero:

∇w⃗ ln(p(t|x⃗, w⃗)) = 0⃗. (63)

• This shows that maximizing likelihood (assuming Gaussian distribution of

values) is identical to minimum mean square error (MMSE).
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. One dimension .

• Assuming x⃗ to be one-dimensional Eq. 54 yields

y(x⃗i, w⃗) = w0 + w1x1,i. (64)

• Considering the first dimension of w⃗ in Eq. 63, we have

0 = −
1

2σ2

N∑
i=1

(w0 + w1x1,i − ti)
2 ∂

∂w0

; (65)

0 =
N∑
i=1

(w0 + w1x1,i − ti)

= Nw0 + w1

N∑
i=1

x1,i −
N∑
i=1

ti. (66)

• So, we have

w0 = −w1

1

N

N∑
i=1

x1,i +
1

N

N∑
i=1

ti

= a0w1 + b0. (67)
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. One dimension (cont.) .

• Considering the second dimension of w⃗, we have

0 = −
1

2σ2

N∑
i=1

(w0 + w1x1,i − ti)
2 ∂

∂w1

; (68)

0 =
N∑
i=1

(w0 + w1x1,i − ti)x1,i

= w0

N∑
i=1

x1,i + w1

N∑
i=1

x2
1,i −

N∑
i=1

tix1,i (69)
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. One dimension (cont.) .

• So, we have

w1 = −w0

N∑
i=1

x1,i

N∑
i=1

x2
1,i

+

N∑
i=1

tix1,i

N∑
i=1

x2
1,i

= a1w0 + b1

= a1(a0w1 + b0) + b1 (70)

• This finally leads to

w1 =
a1b0 + b1

1 − a1a0

. (71)
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. One dimension: exercise .

• The six-month average daily circulation of the New York Times (period

ending in March) for the last 8 years is

year avg

2003 1,130,740

2004 1,133,763

2005 1,136,433

2006 1,142,464

2007 1,120,420

2008 1,077,256

2009 1,039,031

2010 951,063
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1150000
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. One dimension: exercise (cont.) .

a) What is the expected circulation for the same period in 2012?

b) How does the result change when you look only 5 years back?
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. One dimension: exercise (cont.) .
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. Multiple dimensions .

• Using Eqs. 62 and 54, we can write

R(w⃗) =
N∑
i=1

(
ti − w0 −

D∑
d=1

wdxd,i

)2

=

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


t1
...

tN

−


1 x1,1 · · · xD,1

...
...

...

1 x1,N · · · xD,N




w0

...

wD


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

= ||⃗t − Xw⃗||2 (72)
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. Multiple dimensions (cont.) .

• According to Eq. 63, we set the gradient to zero:

0⃗ = ∇w⃗ ln(p(t|x⃗, w⃗)); (73)

0⃗ = ∇w⃗R(w⃗)

= ∇w⃗||⃗t − Xw⃗||2

= ∇w⃗(t⃗ − Xw⃗)⊤(t⃗ − Xw⃗)

= ∇w⃗ t⃗ ⊤t⃗ − t⃗ ⊤Xw⃗ − (Xw⃗)⊤t⃗ + (Xw⃗)⊤Xw⃗

= ∇w⃗ t⃗ ⊤t⃗ − 2w⃗⊤X⊤t⃗ + w⃗⊤X⊤Xw⃗

= −2X⊤t⃗ + 2X⊤Xw⃗. (74)

• Solving this equation for w⃗ yields

w⃗ = (X⊤X)−1X⊤t⃗. (75)
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. Multiple dimensions: exercise .

• Solve the one-dimensional linear regression exercise (a and b) using the

generic approach.
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. Limitations of linear regression .

• Often, the relationship between data points and target is not represented

well by a linear function:
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. Polynomial regression .

• Here, a possible solution could be a polynomial regression function where

the model depends on a linear combination of powers of a data point.

• In the case of one dimension, the regression model is (similar to Eq. 54)

y(x, w⃗) = w0 +
D∑

d=1

wdx
d =

D∑
d=0

wdx
d. (76)

• Accordingly, the empirical risk is

R(w⃗) =

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


t1
...

tN

−


1 x1 · · · xD

1

...
...

...

1 xN · · · xD
N




w0

...

wD


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

= ||⃗t − Xw⃗||2 (77)

• Hence, to perform polynomial regression in one dimension, we set

xd,i = xd
1,i. (78)

D. Suendermann-Oeft Machine Learning October 17, 2013 73



. Polynomial regression: exercise .

• Solve the one-dimensional regression exercise (a) using the polynomial

approach for D = 2.
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. Polynomial regression: exercise (cont.) .
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. Linear regression: generalization .

• Polynomial regression is also linear since it is linear in its parameters.

• Generally, we can use an arbitrary set of functions fd : R → R such that

y(x, w⃗) =

D∑
d=0

wdfd(x). (79)

• These function are called basis functions, defining the bases of the

feature space.

• Popular basis functions include

– polynomials,

– Gaussians,

– sigmoids,

– sinusoids.
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. Outline .

1. introduction

2. probability and statistics

3. linear regression

4. neural networks

5. Bayesian networks

6. hidden-Markov models

7. decision trees

8. boosting

9. homework
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. Inspired by a neuron... .
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. Inspired by a neuron... .

✂�✂✁

✄☎

✄✆

✝✝✝

✞

✄✁

✂☎

✂✆

✟✠✄✡✂☛

• Dentrites weight the signal xd with θd.

• Weighted signals are accumulated by the node.

• linear-regression-like sum formula:

f(x⃗, θ⃗) = θ0 +

D∑
d=1

θdxd (80)
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. Basis functions .

✂�✂✁

✄☎

✆✆✆

✝

✄✁

✂☎

✞✟✄✠✂✡

☛✁

☛☎

• additional application of feature (basis) functions

• linear-regression-like sum formula:

f(x, θ⃗) = θ0 +
D∑

d=1

θdϕd(x) (81)
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. Basis functions (cont.) .

✂�✂✁

✄☎

✆✆✆

✝

✄✁

✂☎

✞✟✄✠✂✡

☛✁

☛☎

• extension to multiple features

f(x⃗, θ⃗) = θ0 +
D∑

i=1

D∑
d=1

θdϕd(xi) (82)

• The dimensionality of x⃗ can also be different from that of θ⃗.
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. Combining function .

✂�✂✁

✄☎

✄✆

✝✝✝

✞

✄✁

✂☎

✂✆

✟✠✄✡✂☛

• The linear-regression-like sum formula can also be written as

f(x⃗, θ⃗) = θ⃗⊤x⃗. (83)

• Artificial neurons often use a combining function g rather than the sum

itself:

f(x⃗, θ⃗) = g(θ⃗⊤x⃗). (84)

• In the original version of the neuron, we have g(z) = z.
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. Sigmoid function .

• Very popular is the sigmoid, logistic, or squashing function for “soft”

(binary) classification

g(z) =
1

1 + e−z
. (85)

• Minimizing the empirical risk:

R(θ⃗) =
N∑
i=1

(ti − g(θ⃗⊤x⃗i))
2 (86)

∇θ⃗R =
N∑
i=1

2(ti − g(θ⃗⊤x⃗i))(−1)g′(θ⃗⊤x⃗i)x⃗i = 0⃗

g′(z) = g(z)(1 − g(z)) exercise: prove this!
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. Sigmoid function (cont.) .

• Unfortunately, R(θ⃗) = 0⃗ has no closed-form solution.

• However, it is a convex function.

• I.e., there are no local minima.

• Hence, the gradient descent algorithm can be applied (show examples!)

with

θ⃗0 = rand

θ⃗i+1 = θ⃗i − η∇θ⃗R|θ⃗i
(87)

• Possible convergence problems:

– oszillation around minimum when η is too large,

– stalling when gradient is 0⃗ at a non-minimum location (plateaus,

ridges, valleys)
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. Perceptron and classification .

• A perceptron uses the “hard” (binary) classification squashing function

g(z) =

 −1 : z < 0

1 : z ≥ 0
. (88)

• The empirical classification risk is

R2(θ⃗) =
N∑
i=1

1 − δ(ti, sign(θ⃗
⊤x⃗i)) (89)

with the Kronecker function

δ(x, y) =

 1 : x = y

0 : x ̸= y
. (90)

• As this risk function is not monotonous, it is useful to use the

“confidence” of the misclassification:

R3(θ⃗) =
N∑
i=1

max(0,−tiθ⃗
⊤x⃗i). (91)
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. Online perceptron training .

• Instead of calculating gradients over the entire training data, update the

gradient for each misclassified point:

θ⃗i+1 = θ⃗i − η∇θ⃗R|θ⃗i

= θ⃗i − η∇θ⃗(−tj θ⃗
⊤x⃗j)|θ⃗i

= θ⃗i + ηtjx⃗j. (92)

• This update needs to be repeated until a certain threshold for R2 or i is

reached.

• It was shown that if classes are linearly separable in x⃗ space (show

examples!) then gradient descent will converge to a solution producing

zero error (in terms of R2) on the training data.
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. Online perceptron training: example .

• We are given the training data

x⃗2
1 = (1 1)⊤, (3 3)⊤,

t21 = −1, 1. (93)

• For online perceptron training, we assume that

θ0 = (0 0 0)⊤

η = 1. (94)
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. Online perceptron training: example .

• These are the steps the algorithm takes before R2 becomes zero:

θ0 = (0 0 0)⊤ R2(θ0) = 1

θ1 = (−1 − 1 − 1)⊤ R2(θ1) = 1

θ2 = (0 2 2)⊤ R2(θ2) = 1

θ3 = (−1 1 1)⊤ R2(θ3) = 1

θ4 = (−2 0 0)⊤ R2(θ4) = 1

θ5 = (−1 3 3)⊤ R2(θ5) = 1

θ6 = (−2 2 2)⊤ R2(θ6) = 1

θ7 = (−3 1 1)⊤ R2(θ7) = 0

(95)
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. Multilayer networks .

✂�✁✄✂✄✁☎

✆✝

✞✞✞

✟

✆☎

✂✄✁✝

✠✡✆☛✂☞

✂�✁☎

✞✞✞

✂✝

✂☎✁☎

✂✄✁✝

• cascaded neurons

• linear-regression-like multilayer networks are no different from single

neurons:

f(x, θ⃗0,D
0,0 , θ⃗1,D

1,0 , θ⃗2) =

D∑
i=1

θ2,i

D∑
j=1

θ1,i,j

D∑
k=1

θ0,j,kxk . . .

(96)
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. Linear transformation .

f(x, θ⃗0,D
0,0 , θ⃗1,D

1,0 , θ⃗2) =

D∑
i=1

θ2,i

D∑
j=1

θ1,i,j

D∑
k=1

θ0,j,kxk

=
D∑

i=1

θ2,i

D∑
j=1

θ1,i,j(θ⃗
⊤
0,jx⃗)

=

 D∑
i=1

θ2,i

D∑
j=1

θ1,i,j θ⃗
⊤
0,j

 x⃗

= θ⃗′⊤x⃗ (97)
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. Multilayer networks with non-linear classification function .

• Using a single perceptron allows for linear separation of data.

• Using a layer of sigmoids combined with single perceptron allows for

representing convex hulls.

• More than two layers allow for representing more complex shapes.

• Gradient descent must be performed over the entire network.

• approach: error backpropagation
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. Error backpropagation .

✂�✁✄✂✄✁☎

✆✝

✞✞✞

✟

✆☎

✂✄✁✝

✠✡✆☛✂☞

✂�✁☎

✞✞✞

✂✝

✂☎✁☎

✂✄✁✝

R =
N∑
i=1

(ti − f(x⃗i))
2 (98)

=
N∑
i=1

ti − g

 D∑
i=1

θ2,ig

 D∑
j=1

θ1,i,jg

(
D∑

k=1

θ0,j,kxk

)2
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. Error backpropagation (cont.) .

✂�✁✄✂✄✁☎

✆✝

✞✞✞

✟

✆☎

✂✄✁✝

✠✡✆☛✂☞

✂�✁☎

✞✞✞

✂✝

✂☎✁☎

✂✄✁✝

• Partial gradient update:

θ⃗i+1
j,k = θ⃗i

j,k − η∇θ⃗j,k
R|θ⃗i

j,k
(99)
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. Outline .

1. introduction

2. probability and statistics

3. linear regression

4. neural networks

5. Bayesian networks

6. hidden-Markov models

7. decision trees

8. boosting

9. homework
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. Bayesian networks: a detour .

• Taking a detour...

• Assume, we are looking at joint probabilities of D different (discrete)

random variables (aka multinomial joint probability).

p(x1, . . . , xD). (100)

• E.g., in the introduction to probability theory, we looked at the variables

B (box) and F (fruit), i.e., we had D = 2.

• Let us also assume, xd can assume V values (e.g., the vocabulary size in

an NLP application).

• The size of the count table in this case is V D.

• For growing numbers of variables, the table becomes extremely large and

sparse when estimated on training data (e.g. when estimating the

probability of a sentence with D words).

D. Suendermann-Oeft Machine Learning October 17, 2013 95



. Variable dependence .

• If all variables were independent, we had

p(x1, . . . , xD) = p(x1)p(x2) · · · p(xD) =
D∏

d=1

p(xd). (101)

• In this case, the count table could be reduced to a size of V D.

• Independence assumption makes things convenient and simple (näıve

Bayes).

• However, in real world, some variables depend on each other, others do

not.
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. Conditional independence .

• Furthermore, some variables are conditionally independent,

• Two events x and y are conditionally independent given z, iff given

knowledge of whether z, knowledge of whether x provides no information

on the probability of y and vice versa.

• Formally, we have:

p(x, y|z) = p(x|z)p(y|z) (102)

however,

p(x, y) ̸= p(x)p(y). (103)

• We also use the formalisms

(x ⊥ y)|z or x ⊥ y|z (104)

read as “(x is independent of y) given z”.

• To check for conditional independence means to prove Eq. 102 holds true.
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. Conditional independence: exercise .

• Example (binary/Boolean random variables):

– yellow: dry spell

– red: sunburn

– blue: forest fire

– pic:

∗ source:

http://en.wikipedia.org/wiki/File:Conditional independence.svg

∗ author: AzaToth

∗ license: Creative Commons Attribution-Share Alike

• Determine if r ⊥ b|y.
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. Joint probabilities .

• If

x ⊥ y|z, (105)

we can express the joint probability of x, y, and z as

p(x, y, z) = p(x, y|z)p(z)

= p(x|z)p(y|z)p(z). (106)

• If

x ̸⊥ y|z, (107)

we can express the joint probability of x, y, and z as

p(x, y, z) = p(x, y|z)p(z)

= p(x|y, z)p(y|z)p(z). (108)

• Control Eqs. 106 and 108 for r ⊥ b|y of the above exercise.
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. Bayesian networks .

• Bayesian networks (aka graphical models, belief networks) are a visual

representation of dependences between random variables using graphs.

• Nodes are random variables.

• Arcs are dependences (i.e., missing arcs indicate independence).

• The arc’s direction indicates causality:

– source: trigger, parent;

– destination: response.
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. Bayesian networks: examples .

• independence: x ⊥ y ⇐⇒ p(x, y) = p(x)p(y)

x y

• dependence: x ̸⊥ y ⇐⇒ p(x, y) = p(x|y)p(y)

x y

• Referring to the parent(s) of a node xi as xpa(i), we can write the joint

probability of all the variables in a Bayesian network as

p(x1, . . . , xn) =
n∏

i=1

p(xi|xpa(i)). (109)
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. Observed and hidden variables .

• In probability theory, we refer to conditioning as the idea that beliefs

depend on the availability of information.

• In the example on boxes and fruit, we saw that the probability of the

event b (blue box) depended on whether we had observed the event o

(orange) [posterior] or not [prior].

• Accordingly, we say that o is

– observed

o

– hidden

o

D. Suendermann-Oeft Machine Learning October 17, 2013 102



. Is x ⊥ z|y? Example: Markov chain .

• We are given the following Markov chain

x y z

• Example: x = overcast? y = rain? z = wet floor?

• Now, we want to determine whether x ⊥ z|y using Eq. 102

p(x, z|y) =
p(x, y, z)

p(y)

=

∏
xi∈{x,y,z}

p(xi|xpa(i))

p(y)

=
p(x)p(y|x)p(z|y)

p(y)

=
p(x)p(y, x)p(z, y)

p(y)p(x)p(y)

= p(x|y)p(z|y) ⇐⇒ x ⊥ z|y. (110)
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. Is x ⊥ z|y? Exercise: One trigger/two responses .

.

x

y

z

• Example: y = sick? x = fever? z = headache?

• Determine whether x ⊥ z|y using Eq. 102

p(x, z|y) =
p(x, y, z)

p(y)

=

∏
xi∈{x,y,z}

p(xi|xpa(i))

p(y)

=
p(y)p(x|y)p(z|y)

p(y)

= p(x|y)p(z|y) ⇐⇒ x ⊥ z|y. (111)
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. Is x ⊥ z|y? Exercise: Two triggers/one response .

• We are given the following graph

x

y

z

• Example: x = spilled coffee? z = rain? y = wet floor?

• Determine whether x ⊥ z|y using Eq. 102
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. Is x ⊥ z|y? Exercise: Two triggers/one response (cont.) .

p(x, z|y) =
p(x, y, z)

p(y)

=

∏
xi∈{x,y,z}

p(xi|xpa(i))

p(y)

=
p(x)p(y|x, z)p(z)

p(y)

=
p(x)p(y|x, z)p(z)

p(y)
·
p(z, y)

p(z, y)

=
p(x)p(y|x, z)p(z)

p(y)
·

p(z, y)∏
xi∈{y,z}

p(xi|xpa(i))

=
p(x)p(y|x, z)p(z)

p(y)
·

p(z, y)

p(y|x, z)p(z)
= p(x)p(z|y) ⇐⇒ x ̸⊥ z|y. (112)
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. Näıve Bayes classification .

• Graphical model of a näıve Bayes classifier:

x1

y

xn...

y

xi

n

• On the right: plate notation

• The observation variables xi are independent given the class y (we

showed this earlier).
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. Näıve Bayes classification (cont.) .

• Determining the best class y given observations xn
1 := x1, . . . , xn:

ŷ = argmax
y

p(y|xn
1 )

= argmax
y

p(xn
1 , y)

p(xn
1 )

= argmax
y

p(xn
1 , y)

= argmax
y

∏
xi∈{xn

1 ,y}

p(xi|xpa(i))

= argmax
y

p(y)
n∏

i=1

p(xi|y)

= argmax
y

log

(
p(y)

n∏
i=1

p(xi|y)
)

= argmax
y

log p(y) +

n∑
i=1

log p(xi|y)
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. Näıve Bayes classification: exercise .

• We are given 100 sample utterances and a semantic class for each

utterance (describing its topic).

• For the sake of simplicity, the utterances are already converted into

vector form (100 word presence vectors of dimensionality D = 72) stored

in the Octave matrix nb (see word.txt for mapping to original data).

• The respective semantic classes are coded as integers between 1 and 13

and stored in the vector nbc (see class.txt for mapping to original data).

• All the data is available in the file nb.m. Using this data,

a) Build a näıve Bayes classifier using the entire data body.

b) Which class does the classifier return for the input utterance

i want to pay my bill?

c) Test your classifier on the entire amount of available data.

d) Select 90 random utterances and train your classifier on this data.

Test the classifier on the held-out test set. Repeat this exercise.

e) Perform ten-fold cross-validation.
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. Language models .

• A statistical language model (SLM) assigns a probability to a sequence of

words p(wM
1 ).

• It is a crucial component in machine learning disciplines such as

– speech recognition,

– spoken language understanding,

– machine translation,

– syntactic tagging and parsing.

• Due to data sparseness, context is taken into account in a varying degree

(unigram SLM, bigram SLM, trigram SLM, ngram SLM).
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. Unigram SLM .

• A unigram SLM takes no context knowledge into consideration.

• That is, the probability of a word wm is independent of its predecessors

(wm−1, etc.) and successors (wm+1, etc.).

• The respective Bayesian network is

w1 w2 w3 ... wM

• Repectively, we have

p(wM
1 ) =

∏
wm∈{w1,...,wM}

p(wm|wpa(m))

=

M∏
m=1

p(wm) (113)
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. Bigram SLM .

• A bigram SLM takes knowledge about a word’s predecessor into

consideration.

• That is, the probability of a word wm depends on its single predecessor

wm−1.

• The respective Bayesian network is

w1 w2 w3 ... wM

• Repectively, we have

p(wM
1 ) =

∏
wm∈{w1,...,wM}

p(wm|wpa(m))

= p(w1)
M∏

m=2

p(wm|wm−1) (114)
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. Trigram SLM .

• A trigram SLM takes knowledge about a word’s two closest predecessors

into consideration.

• That is, the probability of a word wm depends on the predecessors wm−1

and wm−2.

• The respective Bayesian network is

w1 w2 w3 ... wM

• Repectively, we have

p(wM
1 ) =

∏
wm∈{w1,...,wM}

p(wm|wpa(m))

= p(w1)p(w2|w1)

M∏
m=3

p(wm|wm−2, wm−1) (115)
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. Smoothing .

• In our exercises on MT and näıve Bayes, we have made use of strategies

coping with unlikely events.

• The fact that we have no encountered certain (combinations of) events

does not mean they do not exist, it may just be that our data is too

sparse.

• Assuming zero probability of these events often does not work due to the

factorial combination of event probabilities.

• A technique to overcome this effect is smoothing which discounts some

of the probability mass of observed events and assigns it to unobserved

events.

• Popular smoothing techniques include

– additive (Laplace) smoothing

– absolute discounting (ngrams)

– leaving-one-out (ngrams)
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. Additive smoothing .

• Additive smoothing is based on the idea that, due to data sparseness, we

have missed a fixed ratio of occurrences per event as expressed by the

smoothing parameter α.

• Hence, we re-distribute our probability mass as follows:

p′(xi) =
p(xi) + α

n∑
j=1

(p(xj) + α)

=
p(xi) + α

1 + αn
. (116)

• In our exercise on näıve Bayes classifiers, α could be extremely small

(e.g. 10−100) since taking the logarithm converts this value into a

number not colliding with the machine precision.
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. Absolute discounting .

• This technique copes with sparseness of ngram counts.

• Due to the exponential explosion of possible ngrams with growing order

n, data gets sparser and sparser as well.

• Consequently, an approach is to back off the ngram order in case of zero

probabilities.

• Absolute discounting discounts non-zero probabilities by an absolute

value βµ and redistributes the probability mass to unseen events backing

off by one ngram order:

p′(wm|wm−1
m−µ+1) =

1

F

 p(wm|wm−1
m−µ+1) − βµ for p(wm|wm−1

m−µ+1) > 0

βµp
′(wm|wm−1

m−µ+2) otherwise
(117)

with the normalization constant F .

• βµ can be determined based on heuristics or trained on a development

set.
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. Leaving-one-out .

• In contrast to absolute discounting, this technique linearly combines the

probabilities of all ngram counts down to the unigram for the given

history:

p′(wm|wm−1
m−µ+1) =

m∑
µ=1

λµp(wm|wm−1
m−µ+1) with

m∑
µ=1

λµ = 1.(118)

• Again, λµ can be determined based on heuristics (e.g. by discounting

non-zero counts of observed events by one–“leaving one out”) or trained

on a development set.
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. Outline .

1. introduction

2. probability and statistics

3. linear regression

4. neural networks

5. Bayesian networks

6. hidden-Markov models

7. decision trees

8. boosting

9. homework
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. Hidden-Markov models .

• As a motivation, let us look at a weather prediction task.

• Here, we are looking at a number of random variables:

– yi: the air pressure (low, high) on day i

– xi: the fact whether it is raining on day i

• Intuitively, there is a causal relationship between yi

and xi as expressed by the network on the right.

• It also shows that

– xi are observed variables (everybody can tell

whether it is raining or not) while

– yi are hidden (assuming we do not have a ma-

nometer, the air pressure is unknown).
....

yi

xi

n
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. Hidden-Markov models: bigram .

• Now, we want to take into account that the air pressure tomorrow is not

independent of the air pressure today.

• That is, there is a relationship between yi and yi+1:

y1 y2 y3 ... yn

x1 x2 x3 xn

• This graph looks like a bigram SLM with additional observed variables

generated by every hidden.
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. Hidden-Markov models: bigram (cont.) .

• Since xn
1 are observed variables, a typical task is to determine the most

likely yn
1 given xn

1 :

ŷn
1 = argmax

yn
1

p(yn
1 |x

n
1 )

= argmax
yn
1

p(xn
1 , y

n
1 )

p(xn
1 )

= argmax
yn
1

p(xn
1 , y

n
1 )

= argmax
yn
1

∏
xi∈{xn

1 ,yn
1 }

p(xi|xpa(i))

= argmax
yn
1

n∏
i=1

p(xi|yi)︸ ︷︷ ︸
acoustic model

p(y1)
n∏

i=2

p(yi|yi−1)︸ ︷︷ ︸
language model

(119)
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. Hidden-Markov models: exercise .

• We are given 962 sample tokens taken from the medical Part-of-Speech

tagging corpus Genia available at

http://www-tsujii.is.s.u-tokyo.ac.jp/˜genia/geniaform.cgi

• For the sake of simplicity, the tokens are already converted into vector

form (962 pairs (xi, yi) stored in the Octave matrix hmm (see hmm.m;

wordHMM.txt and classHMM.txt maps to original data). Using this data,

a) Estimate the probability (1-gram, 2-gram, 3-gram) of the tag

sequence

NN CC NN VBP NN

b) Build a unigram HMM classifier using the entire data body.

c) Which class sequence does the classifier return for the input phrase

induce 2 estrogens?

d) Test your classifier on the entire amount of available data.

e) Perform ten-fold cross-validation.

f) How does the result of c) change when using a bigram classifier?
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. Outline .

1. introduction

2. probability and statistics

3. linear regression

4. neural networks

5. Bayesian networks

6. hidden-Markov models

7. decision trees

8. boosting

9. homework
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. Decision trees .

Decision trees have two kinds of

nodes:

1. Each leaf node has a class label.

This label is determined by the

majority vote of the training

samples reaching that leaf.

2. Each internal node is a question

on features.

It branches out according to the

answers.
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. Decision trees: advantages and applications .

Advantages

• simple to understand, interpret, and implement

• have value even with little hard data (expert estimates can be used)

• robust against violations of model assumptions

• computationally cheap (both training and testing)

• able to handle both numerical and categorical features

Applications

• financial, economical decision making

• expert systems (e.g. for medical diagnosis)

• language processing and dialog systems (call flow, CEI, Engager,

Escalator, SLU, verbatim)

• . . .
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. How to grow a tree .

Some approaches and their history

• A decision tree can be constructed manually by a knowledge engineer.

• It is more fun (and more accurate if enough data is available) to induce a

tree from training data.

age income status interested?

66 high married yes

34 high single no

. . . . . . . . . . . .

• Early work was based on divide and conquer algorithms (e.g. Hoveland

and Hunt in the 1950s and 1960s).

• classification and regression tree CART (Breimann et altres, 1984)

• ID3, C4.5, and others were developed by Ross Quinlan starting in 1978.
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. How to grow a tree .

C4.5 (Quinlan 1993)

1. Check for base cases (e.g. all the targets are identical).

2. For each feature x,

compute the information gain from splitting on x.

3. Let x̂ be the feature with the highest information gain.

4. Create a decision node n that splits on x̂.

5. Recur on the subsets obtained by splitting on x̂ and add those nodes as

children of n.
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. How to grow a tree (cont.) .

Why information gain? And what exactly is that?

• We want pure leaf nodes, i.e. all examples having (almost) the same

class.

• A good question ≡ a split resulting in a pure node

• How do we measure purity (or impurity)?

• the node’s impurity ≡ uncertainty of y in a random drawing
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. How to grow a tree .

Entropy

. H(Y ) = −
k∑

i=1

p(yi) log2 p(yi) (120)

• Interpretation:

The number of yes/no questions (bits) needed on average to pin down

the value of y in a random drawing

p(head) = 0.5 p(head) = 0.6

p(tail) = 0.5 p(tail) = 0.4

H = 1 bit H = 0.97 bit
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. How to grow a tree .

Conditional entropy (aka equivocation)

H(Y |X) = −
l∑

j=1

p(xj)
k∑

i=1

p(yi|xj) log2 p(yi|xj) (121)

• Interpretation:

Quantifies the remaining entropy of a random variable Y given that the

value of another random variable X is known.

Information gain (aka mutual information)

I(Y ;X) = H(Y ) − H(Y |X) (122)

• Choose the question that maximizes I(Y ;X).
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. An example .

• Features: color, shape, and size

• What is the best initial question (at the root node)?
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. An example (cont.) .

ID color shape size class

1 red square big +

2 blue square big +

3 red circle big +

4 red circle small -

5 green square small -

6 green square big -

H(Y ) = −
k∑

i=1

p(yi) log2 p(yi)

H(Y |X) = −
l∑

j=1

p(xj)
k∑

i=1

p(yi|xj) log2 p(yi|xj)

I(Y ;X) = H(Y ) − H(Y |X)
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. An example (cont.) .

ID color shape size class

1 red square big +

2 blue square big +

3 red circle big +

4 red circle small -

5 green square small -

6 green square big -

H(Y ) = H

(
3

6
,
3

6

)
= 1 bit

H(Y |X) =
3

6
H

(
2

3
,
1

3

)
+

1

6
H (1, 0) +

2

6
H (0, 1) = 0.46 bit

I(Y ;X) = 0.54 bit
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. An example (cont.) .

ID color shape size class

1 red square big +

2 blue square big +

3 red circle big +

4 red circle small -

5 green square small -

6 green square big -

H(Y ) = H

(
3

6
,
3

6

)
= 1 bit

H(Y |X) =
4

6
H

(
1

2
,
1

2

)
+

2

6
H

(
1

2
,
1

2

)
= 1 bit

I(Y ;X) = 0 bit (!)
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. An example (cont.) .

ID color shape size class

1 red square big +

2 blue square big +

3 red circle big +

4 red circle small -

5 green square small -

6 green square big -

H(Y ) = H

(
3

6
,
3

6

)
= 1 bit

H(Y |X) =
4

6
H

(
3

4
,
1

4

)
+

2

6
H (0, 1) = 0.54 bit

I(Y ;X) = 0.46 bit
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. An example (cont.) .

ID color shape size class

1 red square big +

2 blue square big +

3 red circle big +

4 red circle small -

5 green square small -

6 green square big -

.

color : I(Y ;X) = 0.54 bit

shape : I(Y ;X) = 0 bit

size : I(Y ;X) = 0.46 bit
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. Overfitting .

• Imagine we have a set of features whose combination uniquely identifies

the corresponding class in the training data.

• example: weather forecast

year month day barometer weather

2010 12 11 fall cloudy

2010 12 12 rise cloudy

2010 12 13 high sunny

2010 12 14 rise sunny

2010 12 15 fall cloudy

2010 12 16 low cloudy

2010 12 17 low cloudy

What do you think is the best feature?

Leaving-one-out
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. Overfitting (cont.) .

• Imagine we have a set of features whose combination uniquely identifies

the corresponding class in the training data.

• example: weather forecast

year month day barometer weather

2010 12 11 fall cloudy

2010 12 12 rise cloudy

2010 12 13 high sunny

2010 12 14 rise sunny

2010 12 15 fall cloudy

2010 12 16 low cloudy

2010 12 17 low cloudy

• What do you think is the best feature?

Leaving-one-out
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. Overfitting (cont.) .

• Imagine we have a set of features whose combination uniquely identifies

the corresponding class in the training data.

• example: weather forecast

year month day barometer weather

2010 12 11 fall cloudy

2010 12 12 rise cloudy

2010 12 13 high sunny

2010 12 14 rise sunny

2010 12 15 fall cloudy

2010 12 16 low cloudy

2010 12 17 low cloudy

• What do you think is the best feature?

• I(year) = 0 bit I(month) = 0 bit
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. Overfitting (cont.) .

• Imagine we have a set of features whose combination uniquely identifies

the corresponding class in the training data.

• example: weather forecast

year month day barometer weather

2010 12 11 fall cloudy

2010 12 12 rise cloudy

2010 12 13 high sunny

2010 12 14 rise sunny

2010 12 15 fall cloudy

2010 12 16 low cloudy

2010 12 17 low cloudy

• What do you think is the best feature?

• I(day) = 0.86 bit I(barometer) = 0.58 bit
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. Overfitting (cont.) .

• Imagine we have a set of features whose combination uniquely identifies

the corresponding class in the training data.

• example: weather forecast

year month day barometer weather

2010 12 11 fall cloudy

2010 12 12 rise cloudy

2010 12 13 high sunny

2010 12 14 rise sunny

2010 12 15 fall cloudy

2010 12 16 low cloudy

2010 12 17 low cloudy

• What do you think is the best feature?

• Leaving-one-out: day
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. Overfitting (cont.) .

• Imagine we have a set of features whose combination uniquely identifies

the corresponding class in the training data.

• example: weather forecast

year month day barometer weather

2010 12 11 fall cloudy

2010 12 12 rise cloudy

2010 12 13 high sunny

2010 12 14 rise sunny

2010 12 15 fall cloudy

2010 12 16 low cloudy

2010 12 17 low cloudy

• What do you think is the best feature?

• Leaving-one-out: day
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. Overfitting (cont.) .

• Imagine we have a set of features whose combination uniquely identifies

the corresponding class in the training data.

• example: weather forecast

year month day barometer weather

2010 12 11 fall cloudy

2010 12 12 rise cloudy

2010 12 13 high sunny

2010 12 14 rise sunny

2010 12 15 fall cloudy

2010 12 16 low cloudy

2010 12 17 low cloudy

• What do you think is the best feature?

• Leaving-one-out: day
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. Overfitting (cont.) .

• Imagine we have a set of features whose combination uniquely identifies

the corresponding class in the training data.

• example: weather forecast

year month day barometer weather

2010 12 11 fall cloudy

2010 12 12 rise cloudy

2010 12 13 high sunny

2010 12 14 rise sunny

2010 12 15 fall cloudy

2010 12 16 low cloudy

2010 12 17 low cloudy

• What do you think is the best feature?

• Leaving-one-out: barometer
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. Overfitting (cont.) .

• Imagine we have a set of features whose combination uniquely identifies

the corresponding class in the training data.

• example: weather forecast

year month day barometer weather

2010 12 11 fall cloudy

2010 12 12 rise cloudy

2010 12 13 high sunny

2010 12 14 rise sunny

2010 12 15 fall cloudy

2010 12 16 low cloudy

2010 12 17 low cloudy

• What do you think is the best feature?

• Leaving-one-out: barometer
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. Overfitting (cont.) .

• Imagine we have a set of features whose combination uniquely identifies

the corresponding class in the training data.

• example: weather forecast

year month day barometer weather

2010 12 11 fall cloudy

2010 12 12 rise cloudy

2010 12 13 high sunny

2010 12 14 rise sunny

2010 12 15 fall cloudy

2010 12 16 low cloudy

2010 12 17 low cloudy

• What do you think is the best feature?

• Leaving-one-out: barometer
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. Overfitting (cont.) .

• Imagine we have a set of features whose combination uniquely identifies

the corresponding class in the training data.

• example: weather forecast

year month day barometer weather

2010 12 11 fall cloudy

2010 12 12 rise cloudy

2010 12 13 high sunny

2010 12 14 rise sunny

2010 12 15 fall cloudy

2010 12 16 low cloudy

2010 12 17 low cloudy

• What do you think is the best feature?

• Leaving-one-out: barometer
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. Overfitting (cont.) .

• Imagine we have a set of features whose combination uniquely identifies

the corresponding class in the training data.

• example: weather forecast

year month day barometer weather

2010 12 11 fall cloudy

2010 12 12 rise cloudy

2010 12 13 high sunny

2010 12 14 rise sunny

2010 12 15 fall cloudy

2010 12 16 low cloudy

2010 12 17 low cloudy

• What do you think is the best feature?

• Leaving-one-out: barometer
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. Overfitting (cont.) .

• Imagine we have a set of features whose combination uniquely identifies

the corresponding class in the training data.

• example: weather forecast

year month day barometer weather

2010 12 11 fall cloudy

2010 12 12 rise cloudy

2010 12 13 high sunny

2010 12 14 rise sunny

2010 12 15 fall cloudy

2010 12 16 low cloudy

2010 12 17 low cloudy

• What do you think is the best feature?

• Leaving-one-out: barometer
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. Overfitting (cont.) .

• Imagine we have a set of features whose combination uniquely identifies

the corresponding class in the training data.

• example: weather forecast

year month day barometer weather

2010 12 11 fall cloudy

2010 12 12 rise cloudy

2010 12 13 high sunny

2010 12 14 rise sunny

2010 12 15 fall cloudy

2010 12 16 low cloudy

2010 12 17 low cloudy

• What do you think is the best feature?

• Leaving-one-out: barometer

D. Suendermann-Oeft Machine Learning October 17, 2013 150



. Overfitting (cont.) .

• Imagine we have a set of features whose combination uniquely identifies

the corresponding class in the training data.

• example: weather forecast

year month day barometer weather

2010 12 11 fall cloudy

2010 12 12 rise cloudy

2010 12 13 high sunny

2010 12 14 rise sunny

2010 12 15 fall cloudy

2010 12 16 low cloudy

2010 12 17 low cloudy

• What do you think is the best feature?

• Leaving-one-out: barometer
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. Overfitting (cont.) .

• Imagine we have a set of features whose combination uniquely identifies

the corresponding class in the training data.

• example: weather forecast

year month day barometer weather

2010 12 11 fall cloudy

2010 12 12 rise cloudy

2010 12 13 high sunny

2010 12 14 rise sunny

2010 12 15 fall cloudy

2010 12 16 low cloudy

2010 12 17 low cloudy

• What do you think is the best feature?

• Leaving-one-out: barometer
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. Overfitting (cont.) .

Techniques to avoid overfitting

• feature selection (just discussed)

• pruning

• example of a greedy pruning algorithm:

Given a decision tree T and development data {Xd, Yd}

1. For every internal node in T :

∗ Let T ′
N be T with pruning the sub-tree under N .

∗ N becomes a leaf node of T ′
N .

∗ N ’s class is the majority vote of all examples reaching N .

2. T := arg max
t∈{T,T ′

1,...}
acc(t) (123)

3. Repeat from step 1 until accuracy does not improve anymore.
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. Overfitting (cont.) .

Techniques to avoid overfitting

• feature selection (just discussed)

• pruning

• example of a greedy pruning algorithm: Why not exhaustive?

Given a decision tree T and development data Zd = (Xd, Yd)

1. For every internal node in T :

∗ Let T ′
N be T with pruning the sub-tree under N .

∗ N becomes a leaf node of T ′
N .

∗ N ’s class is the majority vote of all Zd examples reaching N .

2. T := arg max
t∈{T,T ′

1,...}
acc(t) (124)

3. Repeat from step 1 until accuracy does not improve anymore.
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. Outline .

1. introduction

2. probability and statistics

3. linear regression

4. neural networks

5. Bayesian networks

6. hidden-Markov models

7. decision trees

8. boosting

9. homework
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. Boosting .

• Michael Kearns (1988): “Can a set of weak learners create a single

strong learner?”

• Freund and Shapire published a number of boosting algorithms, a very

popular being AdaBoost.

• A string classifier is build as a linear combination of weak classifiers:

H(x) = sign

(∑
i

= 1Tαihi(x)

)
(125)
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. AdaBoost .

• We are given the training data xN
1 and tN1 .

• For each of the T available weak classifiers, the algorithm will determine

a distribution Di(n) over the set of training data points.

• The first classifier is initialized with D1(n) = 1
N

for n = 1, . . . , N .

• Find the classifier producing the lowest error

ht = arg max
i∈{1,...,T}

|0.5 − ε| with ε =

N∑
n=1

Dt(n)δ(ht(xn), tn) (126)

• Chose αt, often as

αt =
1

2
ln

1 − ε

ε
. (127)

• Update the distribution

Dt+1 =
Dte

2δ(ht(xn),tn)−1

Zt

(128)

with the normalization factor Zt.
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. Outline .

1. introduction

2. probability and statistics

3. linear regression

4. neural networks

5. Bayesian networks

6. hidden-Markov models

7. decision trees

8. boosting

9. homework
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. Homework .

• In order to be eligible to write the exam, you will have to satisfactorily

complete a home project.

• Please prepare a slide deck as you would be using for a short presentation

(about 10 slides) about one of the following topics:

– reinforcement learning

– fuzzy systems

– evolutionary algorithms

– support vector machines

– maximum entropy classification

– Gaussian mixture models

– instance-based classification

– deep neural networks

– conditional random fields

• Hand in your slide deck to david@suendermann.com no later than October

31.
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