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General remarks

e The most up-to-date version of this document as well as auxiliary
material can be found online at

http://suendermann. com
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Logical operators

e Propositional logic (aka propositional calculus) is a system of formulas
representing propositions.
e We are using the following logical operators (aka logical connectives):
- (not)
A (and)
V (or)
— (if ... then)
«— (if and only if (aka iff))
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Well-formulated formulas

e In order to build valid (well-formulated) formulas (WFFs) in propositional
logic, we start with a set of propositional variables P = {py,...,pn}.
e Given P, we can derive the set of WWFs F' inductively as follows:
1. 1 € F (true)
2. 0 € F (false)
3. if p € P then p € F (every variable is a WFF)
4. if f € F then —f € F (the negation of a WFF is a WFF)
5. if f,g € F then

a) (fAg)EF
b) (fvg) eF
c) (f—g)€EF
d) (f<—g)€F
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Well-formulated formulas: examples

e Assume the following variables
P ={p,q,r}. (1)
e These are WWHFs:

p

(P A q)

((7p = q) V(g — —r))
these are not:

P

(p < q)

— q
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Precedence and associativity of logical connectives

e QOutermost parenthesis can be dropped:
(pANq) & DpPAg (2)

e Consider the following precedences:

operator | precedence
- 1 (strongest)
A 2
\% 3
— 4
— 5 (weakest)

e E.g., we have:
(pAg) —(qVr) <& pAg—gqVr (3)
e Assume operators of the same precedence to be left-associative:

(p—q) —-r & p—og—rT (4)
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Precedence and associativity of logical connectives: exercise

e Set parentheses to indicate the order of evaluation:

P—>qVTrAS—tAUANV— w (5)

e Drop as many parentheses as possible:

(= ((((((p = @) V) V) VE) < u) ANv) ANw) A x) (6)
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Some applications of propositional logic

e Design and analysis of digital circuits

— Several million logical gates (physical realizations of logical
connectives) are implemented in nowadays’ micropocessors.

— A circuit comparison algorithm checks whether the propositional
formulas representing two circuits are equivalent.

e Planning
— In many planning tasks (such as in logistics, train or airline
scheduling), multiple compulsory restrictions apply.
— These restrictions can often be expressed in terms of propositional
logic.
— Optimal solutions may be determined by means of logical resolution
techniques (we will learn about this later in this lecture).
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Some applications of propositional logic

e Computer-assisted proof
— Often, proofs of conjectures in a mathematical discipline may be very
complex (100s of pages).

— If the discipline’s axioms are given in form of logical formulas (the
knowledge base), the (in)validity of conjectures may be proven by

resolution.

— This approach allows for proofs of a complexity humans are not able
to handle (1,000,000s of pages).

e Game theory

— Many one-, two-, or multi-player games can be expressed in terms of
formulas of propositional logic.

— Examples include chess, the 8-puzzle, or the 8-queens puzzle.

— Again, resolution may be applied to solve these puzzles or derive
“optimal” solutions.
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Deep Blue

e chess-playing computer by IBM

e On May 11, 1997, Deep Blue won a six-
game match against Garry Kasparov.

e based on brute-force computing power
(30 nodes with 480 VLSI chess chips)

e written in C under AIX

e The evaluation function contained mul-
tiple parameters tuned on 700,000
grandmaster games.

® pic:
— source: http://flickr.com/photos/22453761@N00/592436598/
— author: James the photographer

— license: Creative Commons Attribution 2.0 Generic
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8 queens puzzle

e Place 8 chess queens on
a chessboard that no two
gueens attack each other.

e There are

64
8

— 4,426, 165, 368

possible arrangments.

e But only 92 solutions.
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Semantics of propositional formulas

e So far, we have investigated the syntax (structure) of propositional
formulas.

e Now, we want to look at the semantics, that is the meaning, or truth, of
propositional formulas.

e In general, without further knowledge about the variables of a formula,
we cannot tell whether a formula is true or false.

e E.g., without knowing the truth value of p and ¢q, the formula

pVgq (7)

may be true or false.

e To that end, we introduce the valuation, or interpretation of a formula as
the function

I:F—B with B={0,1}. (8)
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Valuation

e We define the valuation I inductively as follows:
1. I(1) =1
2. I(0) =0

3. I(p) e Bforallpe P
(values for all p € P appearing in the formula have to be provided)

I(~f) = I(I(f)) forall f € F

I(f Ag) = IN(I(f), I(g)) for all f,g € F
I(f v g) = I(I(f), I(g)) for all f,g € F
I(f — g) = I.(I(f),I(g)) for all f,g € F
I(f « g) = I.(I(f),I(g)) for all f,g € F

© N o o &
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Valuation of logical connectives

IA(p,q):

I_.(p,q):

I.(p): p
0 1
1|0
p Iy (p,q):
0 1
0|0 0
01 d 1
p I..(p,q):
0 1
1|0 0
11 T

- O

o =0
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Valuation: example

e We are given the formula
f:

e Now, we want to evaluate f for all possible interpretations of p and q.

p—q— (—-p— q— q). (9)

e A handy way to do so is to use a truth table:

p q g:=-p h:=g—q 1t:=h—>q jJ:=p—oq J—1
0 0 1 0 1 1 1
0 1 1 1 1 1 1
1 0 0 1 0 0 1
1 1 0 1 1 1 1
with
h
p—a— (R —>d—a)- (10)
J g
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Valuation: excercise

e Evaluate the following formulas for all possible interpretations

(@) rVrA—-q—pA(—qA\-—r)

e Hint: You do not need to use the truth table excessively if you can apply

simplifications derivable from the valuation table of logical connectives

such as
P
pANAO
DA D
P—D
p<«—0
P < P

t ¢ ¢ 09

==~

N =

N

SN S’ SN N SN N

—_ = e e =
o1 w

AN N N N N /™

(@)
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Turning natural language into propositional formulas

e Inspector Watson is called to a jewelry store that has been subject to a
robbery where three subjects, Austin, Brian, and Colin, were arrested.

e After evaluation of all facts, this is known:

1. At least one of the subjects is guilty:
fi:=aVvbVe (17)
2. If Austin is guilty he had exactly one accomplice:
fai=a—>bA-cV -bAec. (18)
3. If Brian is innocent, so is Colin:
f3 := b — —c. (19)
4. If exactly two subjects are guilty, Colin is one of them. Hence, out of
three possible pairs of subjects, there is only one impossible:
fa:=—-(aANbA-c). (20)
5. If Colin is innocent then Austin is guilty:
f5 := —c — a. (21)
e Exercise: Who are the culprits? (Hint: conjunctively combine f1,..., f5)
Logic January 28, 2012 20
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Tautologies

e We have seen that Formula 9 is true for every propositional valuation.
e Such a formula is called tautology (Ludwig Wittgenstein, 1921).

o Iff f is a tautology this is also denoted as
= 7. (22)

e Wittgenstein on logic language and the mystery of the world:

http://www.youtube.com/watch?v=Pv68v_reEQM

e Examples:
—pV p

— P — P
—PANqg—D
— P —PpPVgq
=P — 0« —p

o & O b=

6. EpANg—qAp
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Validity, satisfiability, contingency

e validity: f is valid < f is a tautology, i.e., all interpretations make f true.
e satisfiability: At least one interpretation makes f true.
e unsatisfiability, contradiction: All interpretations make f false.

e contingency: Interpretations of f are contingent upon the truth values of
f’s atomic parts. l.e., contingent propositions are neither necessarily true
nor necessarily false.
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Equivalence

e Two formulas f and g are equivalent iff
= feog (23)

e Examples:

1) E-0<1 — -1 — 0

2) EpV-p—1 — pA-p«— 0 tertium non datur

3) EpvO0O—np — pAl<—p neutral element

4) EpVvle1 — p A0« 0

5) EpAp<—p — pVp—p idempotency

6) EpAgq—qgADp — pV g+ qVp commutativity

7)) EpAN@AT) = pV (g Vr)«— associativity
(PAg) AT (pVaq)Vr

8) F-pep double-negation

99 EpA(PpVg) < p EPVDPAg<+ p absorption
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Equivalence (cont.)

10) EpA(gVr)«— FpVgAr «— distributivity
PAQVPAT (Vg AN(pVr)

11) E—-(pANqg) > —-pV—-qg E-(pVq) «— —-pA-qg de Morgan’s rules

12) =E(p—q) < pVgq elimination of —

13) E(p—q) & elimination of —

(—mpVq) A (—qVp)
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Equivalence: exercise

e We are given the formula

fi=p—q— (-p—q—q). (24)
Prove that f is a tautology using equivalence rules.
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Literals and clauses

e Transformations such as the ones in the last exercise can be applied
algorithmically turning an arbitrary formula into a normalized form.

e In order to show this, we need a couple of definitions.

e A propositional formula f is called a literal iff either of the following
cases applies:

1. f=00o0r f =1.
2. f = p with p € P (positive literal)
3. f

e The set of all literals is denoted as L.

—p with p € P (negative literal)

e A propositional formula c is called a clause iff ¢ has the form
c=l;V:--Vi, (25)

where l1,...,1,,, € L.
e That is, a clause is a disjunction of literals.

e The set of all clauses is denoted as C.
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Set notation of clauses

e Due to the associativity, commutativity, and idempotency of the V

connective, in a clause c, the order of literals is arbitrary, and repeated

literals can be dropped.

e This is why we can interprete the literals of c as the elements of a set:

{li,..., L} (26)
e Due to the equivalence
ElLV- VI VOl V- Vi, (27)
we have
= {li,... 1,0} & {l1,..., 01, } (28)
(dropping of 0 from a clause).
e A special case is
= {0} < {} (29)
(the empty clause).
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Trivial clauses

e A clause c is called trivial, i.e.

= c (30)
iff we have one of the following cases:
1. Due to the equivalence
=1L,V Vi],V1e1 (31)
we have
= {li,...,l,n,1} — {1} (32)
(clause contains 1).
2. Due to the equivalence
ElLiV---VinpVpV-pe—Ili3V:---Vi,V1 (33)
we have (using Item 1)
= {l1,... s lm,p, "} < {1} (34)
(clause contains complementary literals).
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Conjunctive normal form

e A formula f is in conjunctive normal form (CNF) iff f has the form
f=ciN---ANec, with c1,...,¢c, € C. (35)
e Due to the associativity, commutativity, and idempotency of the A

connective, in a formula f, the order of clauses is arbitrary, and repeated
clauses can be discarded.

e This is why we can interprete the clauses of f as the elements of a set
which, in turn, are sets of literals:

{c1y...,¢cn}. (36)
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Conjunctive normal form: example

e TThe formula

(pVgV—-r)A(@qV-rVpVag) A(—rVpV-q) (37)

is in CNF, and its set notation is
A:Hﬁo q, IsaH“J Aguo —q, IsaH:v. Awmv
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Conjunctive normal form: tautology

e Due to the equivalence
Eci A ANepm AL ey A Al (39)
we have

= {ciy.--ycm,1} — {c1,...,cm} (40)
(dropping of 1 from a formula in CNF).

e A special case is
= {1} < {} (41)
(empty CNF).
e Thatis, if f = {c1,...,c,} the following cases are equivalent
a) = f
b) =c;forallz e {1,...,n}
c) ¢c; — {1} forallz € {1,...,n}
d) f—{}
(tautology properties).
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Conjunctive normal form: algorithm

e This algorithm turns an arbitrary propositional formula f into CNF:

1. Eliminate < by Equivalence 13:

F@<—aq < (-pVa) A(-qVp) (42)
2. Eliminate — by Equivalence 12:
F(—4q) < pVg (43)
3. Simplify the formula using the Equivalences 1, 8, 11:
a) =01
b) =E-1+<0
c) F-pe—p
d) E-(pANg) < —pV g
e) E-(pVaq) — pA—q

Now, the connective — will only appear in front of propositional
variables (the formula is in negation normal form).
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Conjunctive normal form: algorithm (cont.)

4. Expand the formula using the following variants of the law of
distributivity (Equivalence 10):

a) EpVgAr— (pvg AN(pVr)
b) EpAgVvr— (pVvr)A(gVvr)

This is to transform the formula into a conjunction of disjunctions.

5. Transform the formula into set notation.

D. Suendermann Logic January 28, 2012
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Conjunctive normal form: algorithm: example

e Let us demonstrate the algorithm using the formula

f:=p—q— (mp— q). (44)
1. (skipped)
2. =f & -pVqg— (-p— —q)
< ~(-pVgq)V(-p— q)
< —(-pVgq)V (mpVq) (45)
3 =f & —-(-pVgqgV(pVg)
& ——pA-qV(pV q)
& pA—gqV(pV q)
(46)
4. =f & (Vv@EV-9)A(-qV(pV q)) (47)
5. =f < {{p,—q}} (48)
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Conjunctive normal form: derivation from truth table

e In case there are not too many variables involved, the CNF can also be

derived directly from the truth table.

e To demonstrate this, let us consider the above example

f:

e From those rows where f evaluates to 0, we can derive the CNF as

=f< -(-pAq) < pVq

ﬁl@lmlﬁll@v\.

~— ~~
g h

- =0 O

© = O

1

© = = Q

— - O | S

— = O | Sk

(49)

(50)

or, alternatively, from rows turning 1 the disjunctive normal form (DNF)

=f< - pA-qVpPpA—-qVpAg.

(51)
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Conjunctive normal form: exercise

e Transform into CNF:

a) f:
b) g:

p—(qer)

p—q—71 < "8VL

36
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Formal proofs

e Proofs are one of the main notions of logic.

e Given
— a set of formulas {f;,..., fn.} (the knowledge base) and
— a formula g (the conjecture),
we ask whether g can be proven based on (or inferred from the

knowledge base.

e That is, we ask whether

.\..H\/...\/bﬁi'v.@ Amwv

is a tautology.

e One possibility to answer this question is to convert Formula 52 into CNF
and to check whether all its clauses are trivial.
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Formal proofs: example (hypothetical syllogism)

e Given the knowledge base

fi o Pp—4q

f2 q—T (53)
prove the conjecture

g : p—T (54)

e This is, we need to prove whether
F@—aA(@—r)—(p—r) (55)
e This proof can be done using a truth table or by conversion into CNF.

e This specific rule is called hypothetical syllogism.
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Inference rules

e Another way to prove a conjecture from a knowledge base is to use
inference rules.

e An inference rule is a pair consisting of a set of premises {f1,..., fn}
and a conclusion g written as

Jis° s fn
. g

read as

From f1,..., fn, we can infer that g.

D. Suendermann Logic January 28, 2012
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Inference rules: examples

e simplification e modus tollens
AN -q,p — g
LD C. TP

e modus ponens e hypothetical syllogism
pP—4q,p Pp—4qg,q —T
. q S.p—T

e biconditional elimination e resolution
P<—q,PpVq pVvg,pVvr
S.PpANQ S.qVr

D. Suendermann Logic January 28, 2012
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Cut rule

e Returning to the set representation of CNF, a handy inference rule for
clauses is the cut rule.

e Given a propositional variable p and two clauses ¢; and c-, the cut rule is:

{p}Uci,{p}Uc

C.c1 U e
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Cut rule: proof

e We transform the conventional representation of the cut rule into CNF:

.*

Aﬁ/\QHV\/AJﬁ/\QMv — Cc1 V Co
—((pVer) AN(—pVez)) Vel Ve
JA@ V DHV V |_A|_Nw V QMV V C1 V Co

t ¢ ¢

—p/A\-cyt VPpAN-ca2VerVes
a

(—pVa)A (—cy1Va)

@
t 3¢

(pVerVe))A(—ex Ve Ves)

((kpVbB)A(—=pVe) A((—er VD) A (e Ve))

[
0

= ﬁﬁl&uv D, C1, vau ﬁl_mf —1C2,C1, ONH“J

AI_OT@V C1, ONH“JA“HI_OTI_ONv C1, ONMW Amav

e Since all clauses in f are trivial,
= 7. (57)
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Cut rule: special cases

e Using Equivalence 12 (elimination of —), the following of our inference
rule examples can be regarded as special cases of the cut rule:

{} and c; :

— Modus ponens. With c; : {q}, we have

{p} U{},{—-p} U{q}
~Aruiq}

— Modus tollens (show this).
— Hypothetical syllogism (show this).

— Resolution.
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Provability

e Given a set of clauses M (the assumptions; a knowledge base) and a
single clause f, we define a relation

M+‘ f (58)
read as

f is provable from M.

e This relation is inductively defined as
a) M proves all its assumptions:

If f € M then M + f. (59)

b) If two clauses {p} U c; and {—p} U c5 are provable from M then the
clause c; U c3 is provable (applying the cut rule):

If M+ {p}Ucy and M + {—p}Ucs then M F c; Ucy. (60)
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Provability: example

e \We want to show that

{{—-p,q},{—~q, - p},{—aq,p},{qa,p}} - {0}.

e This is one way to do so:
L. {{-p,a},{—q;—p}} F {—-p}
2. {{—a,p},{9;p}} - {p}
3. {{—ph{p}}F{}

(61)
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Provability: exercise

e We are given

the following knowledge base

Ji = p—gq
J2 == q—r
fa = r—s
fa = s—t
fzs = t—u
fe == u—p
fr = pVqgVrVsVitVu
fs == —pV-gqgV-rV-osV-atVv-u (62)
e Show that 0 can be inferred from the knowledge base.
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Satisfiability of sets of clauses

e In multiple applications, it is necessary to determine a variable
interpretation rendering all the clauses in a set Cj true.

e That is, we want to determine whether Cj is satisfiable and, if so, a
solution, i.e., a satisfying interpretation.

e Consider the following obvious cases

1) ¢4 {{r};{—q},{r},{—-s},{—t}} (satisfiable)
2) Cy = {{}, {p}, {~a}, {r}} (unsatisfiable)
3) Cs3 = {{p}, {—q}, {—p}} (unsatisfiable)

D. Suendermann Logic January 28, 2012
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Unit clause and trivial set of clauses

e A clause is called unit clause iff it contains one literal:

c={p} or c={-p} with peP. (63)
e A set of clauses C| is called trivial in one of these cases:
1) Cjp contains the empty clause:
{} € Co. (64)
That is, Cy is unsatisfiable.
2) C contains only unit clauses of different propositional variables:
Ve(e € Co — dp(p € P A (e ={p} Vec={-p})))A
Vp(p € P — —({p} € Co A {—p} € Co)). (65)
That is, Cj is satisfiable as determined by Cj’s unit clauses.
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The algorithm of Davis and Putnam: basic principles

e The Davis and Putnam (DP) algorithm is to find a satisfying clause given
a set of clauses by applying

1) cut rule
2) subsumption

3) case distinction
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The algorithm of Davis and Putnam: cut rule

e The DP algorithm uses a special case of the cut rule:

{lti,..., 0,1}, {1}
A:Hq ¢ oo NSM

reducing the original clause length by one.

e Generally, this operation is performed by the function

cut : 2¢ x L — 2€¢ (66)
defined as
cut(Co,l) = {c\{—l}|c € Co N -l € c}. (67)
e Example:
cut({{p; a}s{7p, 7} {q}t}, 7p) = {149}} (68)
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The algorithm of Davis and Putnam: subsumption

e Assume the example

Co := {{p,q, 7}, {p}}. (69)

As we have

Ep—pVqV-r, (70)

we can drop (subsume) {p, g, -7} from Cy.

e Formally, we introduce the function

sub : 2€ x L — 2€ (71)
that subsumes all clauses in Cj containing the unit clause {l}:
sub(Co,l) = {c € Co|l € c} U {{l}}. (72)
e Example:

sub({{p, q}, {—p,7},{—a}}, ) = {{p.a}, {—a}, {—p}} (73)
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The algorithm of Davis and Putnam: reduction

e Since cut rule and subsumption have the same argument spaces they can
be combined to a general reduction function.

e In doing so, consider that applying the cut rule returns only cut versions
of those clauses that originally contained —l.

e Hence, we add all those clauses not containing -l before applying
subsumption.

e This yields
red(Cp,1l) = sub(C7 U C3,1) (74)
with
C1 = cut(Cp,l) = {c\{-l}|c € Co A -l € ¢} (75)
and
C2 = {c € Cy|l & c}. (76)
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The algorithm of Davis and Putnam: reduction (cont.)

e Assuming C|y is not trivial, we know that applying subsumption to C;
does not affect any of its clauses since they originally contained —l, i.e.,
they do not contain [.

e Hence, subsumption can only affect C> which is why we can write

qmn_AQoq Nv = mC—uAQH U qu Nv

QH U m:—uAwa Nv

= {c\{~l}lce Con-l € c}U

{ce Coll € c Nl &c}u{{l}}. (77)

e Example:

qmn_iﬂcf QHJ Al_ﬁw ﬁvw AI_QMT I_ﬁv — AAQT AI_QHJ Al_ﬁwv Aﬂmv
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The algorithm of Davis and Putnam: case distinction

e This principle is based on the following proposition:
C) is satisfiable iff Co U {{p}} or Co U {{—p}} are satisfiable.
Here, Cj is a set of clauses; p is a propositional variable occurring in Cj.
e This sounds like a trivial principle since if there is a variable interpretation

satisfying Cy it will include the variable p which must be either 0 or 1 in
this specific interpretation.

e The case distinction principle is, however, essential to the DP algorithm
as it injects unit clauses required for cut rule and subsumption.
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The algorithm of Davis and Putnam

e We are given a set of clauses Cy and search for a propositional valuation
satisfying Cj.

1. Iteratively apply C;1 1 := red(C;,1) for all
le{p,—ppe P}NnC;, +1=0,1,...
If C;4+1 turns out to be trivial, stop.

2. Otherwise (case distinction), choose a variable p from C; (should not be
a unit clause since those had been tried in 1.)

a) lteratively apply C;4+1 :=red(C; U {{p}},1) for all
l € {p,p|lp € P} NC;. If C;y, is found to be satisfiable, stop.

b) Iteratively apply C; 1 := red(C; U {{—p}},1) for all
l € {p,—plp € P} NC;. If C;4, is found to be satisfiable, stop.

c) Otherwise, Cy is not satisfiable.

e Step 2 might need to be recursively applied multiple times until a
solution (satisfiability or contradiction) is found.
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The algorithm of Davis and Putnam: example

e We are given

QO"

A:Hﬁo q, .wH“J A"HI_? r, I_ﬂH“J A"Heau mH“J Anﬂl_ﬁu q, I_ﬁHT A"HI_mu mwuv
A“HI_Nuq I_Qq.wvl_e\.wqﬁﬁw I_Qu.wurﬁlsﬁ I_.wvuﬁl_ﬁw I_.www Aﬂ©v

1. (skipped—Cj contains no unit clauses)

2. pick p
a) C, := red(CoU {{p}},p)

= {{r,t},{r, s}, {—-7q};{—g, s, 7}, {—-r,~s}, {—s},{p}}

Cy : red(C1, —s)
= {{r,—t},{r}, {7 aq};{~q,~r};{—s},{p}}

Qw : ﬁmn_AQwv e\.v
= {{rh{ga};{~q};{—s},{r}}

Cy : red(Cs, q)
= {{r}.{a}, {}:{—s},{p}} (unsatisfiable) (80)
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The algorithm of Davis and Putnam: example

b) Cs := red(CoU {{—p}},p)
= {{g,s},{r;s},{—-s},{—q, s}, {—-r, s}, {—-p}}
Q@ : qmn_Aqu |_.wv
= {{a}, {r}, {—s}, {—~a},{—p}}
Qﬂ : qmn_AQmo Qv
= {{a}:{r}, {—s};{},{—p}} (unsatisfiable)
(81)
c) Cp is unsatisfiable (contradiction).
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The algorithm of Davis and Putnam: exercise

e Apply the DP algorithm to the provability exercise with
a) Co :=A{f1,---,fs},
b) Co :={f1,...,fr}.
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Resolution technique

e In order to prove a conjecture based on a knowledge base, we can apply
the resolution technique:

1. All sentences in the knowledge base and the negation of the sentence
to be proven (the conjecture) are conjunctively connected.

2. The resulting sentence is transformed into CNF.

3. If the empty clause can be derived after an application of the DP
algorithm (or, alternatively, the provability technique), the original
sentence is unsatisfiable, i.e., the conjecture follows from the
knowledge base.
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Resolution technique: exercise

e Let us revisit the criminal case from earlier.

e Remember, we were given the following facts (our knowledge base):

fi aVbVc

fo a— bAN—-cV-bAc
fs —-b — —c

fa —(a A b A —c)

fs -c — a

e Dr. Watson’s gut feeling is that Brian and Colin are the culprits.

e Prove his conjecture using the resolution technique.
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n queens puzzle: exercise

e Using the DP algorithm, show that
— the 2 queens puzzle has no solution,
— the 3 queens puzzle has no solution,

— the 4 queens puzzle has a solution and which one it is.
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Outline

e propositional logic
e first-order logic

e Prolog
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Notions of first-order logic

e Terms denote objects.

e Terms are composed of variables or function symbols:
father(x), mother(isaac), x4+ 7. (83)

with the variable x and the function symbols father, mother, isaac, +,7

e Objects can be put into relation by predicate symbols producing atomic
formulas:

isBrother(adam, father(brian)), =z +7<x-:-7, n el (84)
with the predicate symbols IsBrother, <, €

e Formulas can be combined using logical connectives:

isHuman(x) — isMortal(z), z>1—ozxz+7<x-7. (85)
e Formulas can contain quantifiers defining the semantics (scope) of
variables:
Vz(isHuman(x) — Jy(y = mother(x))). (86)
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Signatures and terms

e A signature is a quatruple defining a specific system of first-order logic:
3> = (V, F, P, arity). (87)
e The members of X are
— the set of variables V,
— the set of function symbols F,
— the set of predicate symbols P, and
— a function assigning an arity to all function and predicate symbols:
arity : FUP — 1. (88)
e Given a signature 3, we define the set of X terms Tx inductively as:
l. Ve(x € V — x € Ty).
2. If f € F and n = arity(f) and t4,...,t,, € Tx then
f(ti,...,t,) € Tx. (89)

e Special case: If f € F and arity(f) = 0 then we can write f instead of
f() (aka constant).
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Signatures and terms: example

e We are given the signature ¥, = (V, F, P, arity) with
V ={=,y,z}
F = {0,1,+,-}
P ={=,<}
arity = {(0,0) (1,0) (+,2) (-, 2) (=,2) (<, 2)}
e Now, we can derive X, terms as follows:
l. z,y,z € Ty
2. 0,1 € T, (0-ary function symbols)
3. +(1,x) € Ty,
4. -(+(1,2),y) € Tx,
e In the following, we will use an infix notation for binary relation and

function symbols.

e E.g., Term 4 would read

(1+x)-y

(90)
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Atomic formulas

e Given the signature ¥ = (V, F, P, arity), if p € P and n = arity(p) and
ti,...,t, € T, then

ﬁAﬂHu...uﬁ;v € kﬁMo A©Hv

the set of all atomic formulas.

e Special case: If p € P and arity(p) = 0 then we can write p instead of
p() (aka propositional variable).

e Continuing with our above example:

— AAl_lAHQ Hvo @vv Ov S kﬁMua A©Mv
or in infix notation
(14+x)-y=0¢€ Ayx_. (93)
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Free and bound variables

e Consider an example from calculus:

€T

H
\@NQN H M.@HN. Afv
0

e Eq. 94 features the three variables x, y and t.

e Trying to substitute variables on both sides of the equation, e.g., & by y

y
1
\ yzdz = mgm (95)
0
or z by y
’ 1 .1
\S\n_.@ = Waw - MHHN (96)
0

shows that there can be two types of variables in formulas: free (x, y)
and bound (z) ones.

e The variable z in this example is bound by the differential operator d.
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Free and bound variables (cont.)

e In first-order logic, variables are bound by the quantifiers V and 4.

e Accordingly, in the following example

Va,y(P(z) = Q(x, f(2), 2)) (97)
x and y are bound variables, and z is free.
e A formula with no free variables is called a sentence.
638
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Free and bound variables: exercise

e Consider the following examples:
a) Va(F(xz) — Jy(G(y, 2)))
b) Va(F(x) — Jy(G(z,y)))
c) Jz(y +z < y)
e Which variables are free, and which ones are bound?

e Which of these formulas are sentences?
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Formulas

e The set of variables var(t) occurring in a term t is inductively defined as
1. var(x) := {x} forall x € V.
2. var(f(t1,...,tn)) :=var(ty) U---Uvar(ty,).

e Given a signature X, in the following, we denote

— the set of formulas as F¥,
— the set of all bound variables of a formula f € Fx as bound(f), and

— the set of all free variables of f as as free(f).
e These sets are inductively defined as
1. 0,1 € Fx (truth values) and
free(0) = free(1) = bound(0) = bound(1) = {} (98)
2. Vf(f € Ax — f € Fx) (atomic formulas) and
free(f) = var(t1)U- - -Uvar(t,,); bound(f) = {} with f = p(t1,...,t,)(99)
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Formulas (cont.)

3. Vf(f € Fs — —f € Fx) (negation) and
free(—f) = free(f); bound(—f) = bound(f) (100)

4. Vf,g(f,g € Fx N free(f) Nbound(g) = {} A bound(f) N free(g) =
{} - (f Vg) € Fx) (logical connectives) and

free(fVg) = free(f)Ufree(g); bound(fVg) = bound(f)Ubound(g)(101)

applying to all logical connectives (V, A, —, <)

5. Vf,x(f € Fs Ax € V\bound(f) — (Va(f)), (Fz(f)) € Fx)
(quantifiers) and

free(Vx(f)) = free(Jx(f)) = free(f)\{x}; (102)
bound(Vx(f)) = bound(3x(f)) = bound(f) U {x} (103)
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Additional conventions

e In literature you encounter expressions of the form

Vre R:dn € N : x < n. (104)
e These abbreviations can be transformed into the formerly introduced

terminology by

Vee M:f &L Vao(@e M — f)

weM:f &L Jx@eMAyf (105)
e Accordingly, Formula 104 can be written as

Ve(r € R — In(n € N Ax < n)). (106)
e Sequences of identical quantifiers can be abbreviated:

vz, y(f) 5 Va(vy(f)- (107)
e Quantifiers have a higher precedence than logical connectives:

va(f)ng £ (Va() Ag (108)
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Structures

e So far, we have learned how to create (well-formulated) formulas in
first-order logic, i.e., we have dealed with syntax.

e The next step is the semantics of first-order logic.

e To that end, given a signature X, we introduce the notion of a structure
S =(U,J) (109)
with
1. the universe U, a non-empty set containing all the values that can
occur when evaluating terms,

2. the interpretation J of all function and predicate symbols of 3.
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Interpretation

e Formally, J is defined as

1. Every function symbol f € F' with the arity n = arity(f) is mapped
to an n-ary function

fl:Ux.--xU—U. (110)

~

n times
2. Every predicate symbol p € P with the arity n = arity(f) is mapped

to an n-ary relation
p’ CU". (111)
3. If = € P then its interpretation should be natural, i.e.
=7 = {(u,v)|u,v €U Au = v}. (112)
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Structures: example

e Using X, as in the above example, we define a structure

Sa = (U, J) (113)
as follows:
1. U = {a, b}
2. 0/ =a
3. 17 =b
4. +7 = {{{a, a),a), {{a,b), ), ({b,a), b), {(b,b), a)}
5. - ={({(a,a),a), ({a,b),a), {(b,a),a), {(b,b),b)}
6. =7 = {{(a,a),(b,b)}
7. <7 = {{a,a),(a,b), (b,b)}
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Variable assignment

e Given a signature X and a structure S = (U, J), we define a variable

assignment
I1:V —-U (114)

assigning a value from the universe U to every variable in V.

e E.g., using the signature X, and the structure S,, a possible variable

assignment is

I, = {{z,a),(y,b),(z,a)}. (115)
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Variable assignment

e Furthermore, we introduce the variable replacement

\
Ci Y = I
I[zy/ca] -+ [2n/cn](y) = < . (116)
Cn Y = Ty
\ I(y) : otherwise
with z1,...,x,,y € V and c1,...,c, € U replacing the value of a

variable y by c; if the variable happens to be identical to x;.

e Using the above example, we have

I,[y/allz/b] = {(z,a),(y,a),(z,b)}. (117)
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Evaluation of terms

e Given a signature 3, a structure S = (U, J), and a variable assignment
I, for every term t, its value (written as S(I,t)) can be derived
inductively as

1. Ve(xr eV — S{I,x) = I(x))
2. If f € F and n = arity(f) and t4,...,t, € Tx then
S, f(t1,... tn)) = F7(SU,t1),...,S(I,t,)). (118)

e Exercise: Using the above signature Y., structure S,, and variable
assignment I,, what is the evaluation of Term 4:

Sa, (1 + ) - y)? (119)
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Evaluation of atomic formulas

e Given a signature X, a structure S = (U, J), and a variable assignment
I, for every atomic formula p(t4,...,t,), its value can be derived as
1 (S(I,t1),...,S(1,t,)) € p’,

S(I,p(t1s...,tn)) = . (120)
0 otherwise.

e Exercise: Using the above signature X, structure S,, and variable
assighment I,, what is the evaluation of Formula 93:

S(I,(1+x)-y=0)? (121)
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Evaluation of formulas

e Given a signature 3, a structure S = (U, J), and a variable assignment
I, for every formula f € Fs, its value can be derived inductively as

1. S(I,0) = 0;S(I,1) =1

S, ~f) = I-(S, f))

S, fvg)=1,(5,f),S(,g))

S, f Ag) =IA(S(,f),S(1,9))

S, f —g)=1-(5,f),5,9))

S, f<—g)=1-(5,7f),5,9))

(1 : Ve(ce U — S[z/d, f) = 1)

0 : otherwise

o o A W N

7. S(I,Vz(f)

7\

\
y

1 : Je(ceUANSI[x/c],f) =1)

8. S(I,3x(f)
0O : otherwise

7\

\
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Evaluation of formulas: exercise

e Using the above signature X,, structure S,, and variable assignment I,

determine the evaluation of the following formulas:

1. Jz((1 4+ =) -y = 0),

A

ve((1 + ) -y =0),

vV,y((1 +x) -y =0),
Vedy((1 + x) - y = 0),
Vydz((1 + ) -y =0 — Vz(x - z = 0)).
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Universal validity

e If f is a formula resulting in
S(I,f) =1 (122)
for every possible variable assignment I, then f is universally valid.

e Being the equivalent to a tautology in propositional logic, universal
validity of a formula f is written as

= f. (123)

o If free(f) = {}, then S(I, f) does not depend on I. In this case, f is
called a closed formula.

e For closed formulas, we use an abbreviated terminology:

S(f): =S, f) if free(f) ={}. (124)
e Also, in the case that
S(f) =1, (125)
we say that the structure S is a model for f written as
S E=f. (126)
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Equivalence, (un)satisfiability

e Also the notions of equivalence and (un)satisfiability are inherited from
propositional logic.

e Two formulas f and g are equivalent iff

= f<—g. (127)

e A set of formulas M C Fx is satisfiable, if there is a variable assignment
I such that

Vm(m e M — S(I,m) =1). (128)

e Otherwise, M is called unsatisfiable written as

M [ o. (129)
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Is a formula unsatisfiable?

e Our next goal is to define an algorithm that checks whether
M = 0. (130)
e In general, this question is undecidable (as shown later).

e We will, however, be able to define a calculus  for which we have

MEFO— M E=DO0. (131)
e This calculus will be based on a semi-decision algorithm.
e l.e, if indeed M = 0, the algorithm will eventually discover this fact.
o If, however, M is satisfiable, the algorithm may run eternally.

e Motivation of semi-decidability: Goldbach conjecture.
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Important equivalences

e In order to define the calculus I, we will transform formulas into
first-order clauses.

e This transformation will make use of the following equivalences (in
addition to the ones we know from propositional logic):

21. = Vx(f) < Jx(—f)
22, —Jx(f) <« Ve (—-f)
23. =Vx(f) ANVx(g) «— Vx(f N g)
24. = dx(f) vV 3x(g) <« Jx(f V g)

25. k= Va, y(f) < Yy, z(f)

26. = 3z, y(f) < 3y, 2(f)

27. If x € V AN x & free(f) then
a) =EVa(f) < f
b) = 3x(f) « f
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Important equivalences (cont.)

28. If x € V A x & free(g) U bound(g) then
2) = Va(f) Vg < Va(f V g)
b) k= 3x(f) Ag < 3z(f A g)
c) FgVvVe(f) < Vz(g V f)
d) EgA3z(f) < Jz(g A f)

e In certain situations, it is necessary to rename bound variables.

o If f € Fx, and x,y € V then f[x/y] is the formula which we obtain by
replacing every occurrence of x by z.

e For example
(Vudv(P(u,v)))[u/z] = Vz3v(P(z,v)). (132)
e This leads us to our last equivalence:

29. If x € bound(f) Ay & free(f) U bound(f) then
= f < flz/y]
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Prenex normal form

e The above equivalences can be used to rewrite an arbitrary formula such
that all quantifiers appear at the beginning of the formula.

e This representation is called prenex normal form.

e Example 1:

Ve(p(x)) — Jx(p(x)) (closed)

2 Vz(p(z)) V Iz(p(z))

& 3az(-p(z)) vV Iz(p(x))

& 3z(-p(z) V p(x))

Z Jx(1)

0 (universally valid) (133)
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Prenex normal form: example

e Example 2:

Jx(p(x)) — Ve (p(x)) (closed)

2 —Jx(p(z)) V Vz(p(z))
i Ve (—p(x)) V Ve(p(x))
& Va(-p(z)) Vv Vy(p(y))
= Va(-p(z) V Vy(p(v)))
B Va,y(-p(@) V p(v)) (134

e This formula says, if there is at least one x turning p(x) true then p(x)
is always true.

e In turn, if there is no « turning p(x) true then p(x) is, logically, always
false.

e Consequently, p(x) is independently of x either true or false (a
propositional variable).
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Equisatisfiability

e The next normalization step requires a wider notion of equivalence.
e We will refer to it as equisatisfiability.

e Consider the example formulas

f1 = VzIy(p(x, y)) (135)

and
f2 = Vz(p(z, s(x))). (136)

e f; and f> are not equivalent.

e Eg., p(x,y) :=x > y.

e They do not even use the same signature (f> uses the function symbol s
not existing in fi).
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Equisatisfiability (cont.)

e However, we can relate f; and f> as follows:

e If a structure S; is a model for f, i.e.,

S1(f1) =1 (137)
then it can be extended to a structure S5 being a model for f5,
S2(f2) = 1. (138)
e This can be done by defining an interpretation s’ such that
p(z, s(x)) (139)
is true for all possible x of the universe.
e In our above example, this could for instance be s(x) := = — 1.
e Formally, two formulas f; and f are equisatisfiable if
= S1(f1) < S2(f2) (140)
also written as
Ji = fa. (141)
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Skolemization

e We are given a signature 3 = (V, F, P, arity) and a closed formula f of

the form
f=Vei,...,z,y(g(x1,. .., Tn,Y)). (142)
e We choose a new n-ary function symbol s € F' and extend the signature:
' = (V,FU{s}, Parity U {(s,n)}). (143)

e Now, we define the formula f’ as follows:
f’ := skolem(f) :

e Here, we have dropped the existential quantifier.

VEi,...5Tn(g(®1s...sTn,s(x1y...,25))). (144)

e Every occurrence of the variable y has been replaced by the term

S(T1yeeeysTy).
e For the resulting formula f’, we have

= f. (145)
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Skolemization: examples

fi = Ve, @m_NCuAﬁ @quvq
skolem(f;) = Vz,y(p(zx,y, MMAHJ Y)));
f2 = <HW_Q<NCuAﬁ Y, vaq
skolem(fz) = Ve, z(p(x, mMAHY z));
.waw — m_8<@m_N¢uAHQ Y, vao
skolem(f3) = <@m_ucimww Y, 2)),
skolem(skolem(f3)) = Vy(p(s2,y,s:(y))) (146)
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Clausal normal form

e This algorithm turns an first-order formula f into clausal normal form:
1. Convert f into prenex normal form.

2. Eliminate all existential quantifiers by skolemization. The result is a
formula of the form

ff=Vzi,...,2.(9) (147)
where g contains no quantifiers.
3. Since g contains only atomic formulas connected by logical

connectives, it can be turned into conjunctive normal form which
produces

f"=Vei,...sxn(di A Adp) (148)
where d; are disjunctions of literals (in first-order logic, literals are
atomic formulas or their negations).
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Clausal normal form (cont.)

4. Applying Equivalence 23, the universal quantifiers can be distributed
onto all d;s resulting in the clausal normal form

f"=e1 AN+ Nepy with ¢ =V, ...,z,(d;), (149)
a conjunction of the first-order clauses cq,...,c,,.

5. This notation can further be simplified by agreeing that all free
variables are implicitely universally quantified:

.*A%v — &H>...>&3
& {dy,...,dpn} (150)
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Clausal normal form: exercise

e Turn the following formulas into clausal normal form:
1. fi=Vydz((1+x) -y =0 —>Vz(x-2z =0)),
2. f2 = 3z,y(p(z) Ap(y) < Fz(p(2))),
3. fs.

e For Task 1, given the structure S,, find a functioning interpretation of

the skolem function replacing the variable x.
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Provability

e Our goal is to find out whether a formula f is universally valid:

= 7. (151)
e This is the same as to tell whether f’s negation is unsatisfiable:
{—~f} 0. (152)
e This can be done by
1. transforming —f into clausal normal form
ciL N\ ACpyp = Ff, (153)
2. trying to prove inconsistency from the set of clauses:
{c1,....;cm} F {}. (154)
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Provability: example

e We want to find out whether the formula

f = 3xvy(p(z,y)) — Vy3z(p(z,y)) (155)

is universally valid.

e This can be done by using the provability algorithm:

1. Transforming —f into clausal normal form:

1.1 Conversion into prenex normal form:

fe I8 I8 I8 12 I8

—(FxVy(p(z,y)) — Vy3Iz(p(z,y)))
2(—3xVy(p(z, y)) V VyTz(p(z, y)))
JxVy(p(x, y)) N ~Vy3Iz(p(z,y))
JxVy(p(z, y)) A Fy—Tz(p(z,y))
JxVy(p(z, y)) A IyVe(—p(z,y))
JxVy(p(z, y)) A FvvVu(—p(u, v))
Jx(Vy(p(x,y)) A FvVu(-p(u,v)))
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Provability: example (cont.)

Jz, v(Vy(p(z, y)) A Vu(—p(u,v)))
Jz, v(Vy(p(z, y)) A Vy, u(—p(u,v)))
Jz, vVy(p(z, y) A Vu(—p(u,v)))

Jz, vWy(Vu(p(z, y)) A Vu(—p(u,v)))

3z, vVy, u(p(x, y) A ~p(u,v))
=: f’ (156)

1.2 Skolemization:
— f’ is of the form

f'=3z(g(z)) with g = JvVy,u(p(z,y) A —p(u,v)). (157)
— Here, g is 1-ary since there are no universal quantifiers in front of

I8 13 18 13 12

the existential quantifier.
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Provability: example (cont.)

— Consequently, skolemization introduces the 0-ary function s,

replacing x:
f" = skolem(f")
= g(sz())
= g(sz)
= JuVy,u(p(sz,y) N = p(u,v)). (158)

— In a second step, the existential quantifier in front of v is
replaced by skolemization:

" = skolem(f")
Vy, Q@Xmav y) A —p(u, mev\v. (159)

~"

h

1.3-5 Clausal normal form:
Since h is already in conjunctive normal form, we have

,\..TC — muA.qu m\v A I_muAQJ .wdv. AHOOV
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Provability: example (cont.)

2. Proving inconsistency:

— We are given clausal normal form

M := {{p(s2,¥)},{7P(u, sv)}} (161)

— Since all variables in first-order clauses are implicitely universally

bound, we can substitute y by s, and u by s, resulting in

M = {{p(sz;sv) }, {7P(52,50)}} (162)
— Application of the cut rule gives

M+ {}. (163)
— Consequently, we have shown that

= . (164)
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Substitution

e In the provability example, we have “guessed” the terms s, and s, to be

able to apply the cut rule.

e We now want to study a method to do systematically calculate terms
which the cut rule can be applied to.

e In order to do so, for a given signature X, we define a substitution

o —= A"HAMHHQ &HVQ ¢ oo Anﬁ.iu.ﬁivw

SN F R AT sy (165)

with
x; € V,t; € Ty fori € {1,...,n} and z; # x; for 1 # j. (166)
e The domain of the substitution is defined as

dom(o) = {x1,...,Tn}. (167)
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Application of a substitution

e Given a term t and a substitution o, we define the application of o to t
(written to) inductively as

1. ;0 :=t; for x; € dom(o),

yforye VAy &dom(o),
3. f(S15+:+38m)0:
e Example: We are given the substitution

o =[xz — cy— f(d)]. (168)

2. yo:

f(s10,...,8,0) otherwise.

e Then, we have the following applications:
l. zo = z,
2. f(y)o = f(f(d)),
3. h(z,9(y))o = h(c,g(f(d))),
4. {r(y),q(d,h(z,z))}o = {p(f(d)),q(d, h(z,c))}-
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Syntactical equations and unifiers

e A syntactical equation (SE) is a construct of the form s = t where s and

t are either both terms or both atomic formulas.
e A system of syntactical equations (SSE) is a set of SEs:
E A"HMH : ﬁHo...qm\; : &S\H“v. AH@©V

e Given an SSE FE and a substitution o, we define the application of o to
E as

Fo:

&HQVOOOQMSQI

{s10 tho}. (170)

e A substitution o solves an SE s = t iff we have so = to.

e If F is an SSE then the substitution o is called a unifier iff it solves every
SE in E.

e Example: Show that

o =[xy, — x3,x3 — f(x4)] (171)
is a unifier of the SSE
E = AguA.\..AHhvv . ﬁAvau QAHHQ HMV . QAng HHVHV AHNMV
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Unification

e We now want to study an algorithm calculating a unifier o for a given
SSE E.

e A number of reduction rules will transform a tuple consisting of an SSE
and a substitution into another such tuple:

(E1,01) ~ (E2,02). (173)

e Here come the reduction rules:
1. fye VAteTs Ny & var(t) then

(EU{y =t},0) v~ (Ely — t],o0 U{{y,?)}). (174)
— If an SSE contains an SE of the form y = t where y is a variable
not contained in term t then the SE is solved by the substitution
[y — t].
— Consequently, the SE can be dropped in favor of applying the
substitution to all other SEs in the SSE and adding it to o.

s(y)-

- Eg., x
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Unification (cont.)

2. fye VAteTs ANy €var(t) ANy # t then
(EU{y =t},o) ~ Q. (175)

— If an SSE contains an SE of the form y = t where y is a variable
contained in term t but not t itself then the SE is not solvable.

— That is because every possible term we can substitute for y will

also affect t and render it different.

- E.g., © = s(x).
3. Wye VAteTIs At &V then
(EU{t = y},0) ~ (EU {y = t},0). (176)
— Moves the variable to the front.
- E.g., s(y) = «.
4. (EU{t =t}, o) ~ (E, o). (177)
— Drops trivial SEs.
- E.g., s(y) = s(y).
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Unification (cont.)

5. f fe FUP An =arity(f) ANS1y...58nst15...,t, € Tx then

(EU{f(S15:++58n) = f(t1,...,tn)},0)

)?vAch“HmH - &Hu...u.wi -

th}, o). (178)
— From the arguments of an n-ary function (predicate) present on
both sides of an SE, n individual SEs are derived.

- E.g., s(s(x),y) = s(y, 2).
6. If f,ge FUPA f # g A m = arity(f) A n = arity(g)
AS1yeeesSmolise..,ty € Tx then

(EU{f(S15-++38m) = g(t1y...5tn)}, o) ~ Q.
— Different functions (predicates) cannot be unified.

- E.g, f(z) = g(=).

(179)
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Unification algorithm

e Given an SSE FE, to determine a unifier, we start off with an empty
substitution:

(E, [])- (180)
e Now, we apply the reduction rules until we have either of the following
cases:
a) We can derive 2 meaning that E is not solvable.

b) We can show that

(E, []) ~ {},0)- (181)
Here, o is the unifier of E also written as

o = mgu(E) (182)
(the most general unifier) with the special case

mgu(s,t) := mgu({s = t}). (183)
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Unification: example

e We are given an SSE with a single SE:

E = {p(z1, f(x4)) = p(z2,23)} with (184)
V ={{x1,...},; F={f}, P ={}.
e Now, we attempt to determine a unifier:
{p(x1, f(x4)) = p(z2,23)}, (1)
2 ({ar =z, f(za) = 23}, ])
> ({f(za) = 23}, [X1 > 22])
% ({zs = f(za)}, [21 — z2])
> ({}[#1 = 22,23 — f(24)]) (185)
e That is, we have
mgu(E) = mgu(p(x1, f(4)),p(x2,3))
= [x1 +— x2,x3 — f(xq)]. (186)
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Unification: exercise

e Determine, if possible, a unifier of the following SSEs:
a) Ey = {p(d,x4) = p(x2, h(c,d)),q(h(d,z1)) = q(x4)},
b) E; = {p(h(x1,c)) = p(x2),q(x2,d) = q(h(d,c),z4)},
c) Es = {p(h(x2,d)) = p(h(x1,d)), q(x1, c) = q(h(x2,d),c)}.
In these exercises, assume

V = A“HHHw...HT.mu” ﬁﬁq&umﬁvgw” A“HﬁgQH“v.
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First-order resolution

e The first-order calculus makes use of two inference rules we will define
next.

e The first-order resolution rule expects
1. two first-order clauses ¢; and ¢ and

2. two atomic formulas p(si,...,8,) and p(t1,...,t,;) whose
syntactical equation is solvable, i.e., we can determine the unifier

p=mgu(p(siy...y8n)P(t1,...,tn)). (187)
e Then, this is the definition of the resolution rule:
ct U{p(s1s..-98n)}, c2U{—p(t1,...,tn)}
S.eipUeap

e The resolution rule makes use of the cut rule and the substitution rule
C
. COo

where c is a first-order clause and o is a substitution.

D. Suendermann Logic January 28, 2012 110



First-order resolution: variable renaming

e When applying the resultion rule, it is sometimes necessary to rename
variables.

e In the following first-order clause set

M = {{p(x)}, {-p(f(x))}}, (188)

unification will result in 2 since both involved clauses use the same
variable x.

e Substituting x by vy in one of the clauses does not change semantics

M’ = {{p(x)}, {—p(f(¥))}} (189)
simply because
va(-p(f (@) S Vy(-p(f(¥)))- (190)
e Now, we are able to determine the unifier
p = mgu(p(x),p(f(y))) = [z — f(y)] (191)

e In conclusion, we can prove contradiction by applying the resultion rule:

res. [x — f(y)]

tp(@) L {~p(fw)ty +F ) (192)
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Factorization: motivation

e Consider the following example

M = {{p(z),p(y)}, {~p(z), "p(y)}} (193)

e Application of the resolution rule using ¢c; = p(x) and c; = —p(x) and
the unifier p = mgu(p(y), p(y)) = [| produces

{{r(x),p(y)}, {—p(x), "p(y)}}
res. []

= {{p(w), p(v)}}
- 1. (194)
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Factorization: motivation (cont.)

e This result does not help since we are attempting to prove contradiction.

e Instead, one could factorize M as follows:

{{p(z),p(y)}; {—p(x), 7p(y)}}

{{p(x), p(y)}, {—p(v), "p(w)}}

Ve, y, v, w((p(z) Vp(y)) A (—-p(v) V —p(w)))

Vz,y,v, w(p(z) A —p(v) V p(x) A =p(w) V

p(y) A —p(v) V p(y) N —p(w))

< Va,v(p(z) A =p(v)) V Vz, w(p(z) A ~p(w)) V
Vy,v(p(y) A —=p(v)) V Vy, w(p(y) A —p(w)))

< Va(p(z)) AVz(-p(x)) V Ve(p(x)) A Ve(-p(x)) V
Vy(p(y)) AVy(—p(y)) vV Vy(p(y)) A Vy(—p(y)))

— Vz(p(x) A —p(x)) V Vy(p(y) A —p(x))
— 0. ﬁomv

!

!

!

D. Suendermann Logic January 28, 2012 113



Factorization: motivation (cont.)

e Another possibility is, as in propositional logic, to apply case distinction
to account for multiple occurrences of negated literals:

e Pick {p(z)}: {{p(=)}, {p(z), p(y)}, {-p(z), ~p(y)}}
res. []

= {{r(x)}, {p(x),p(v)}, {—-P(v)}}

res. [x — y]

= {{}{p(x), p(y)}}
- 0. (196)
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Factorization: motivation (cont.)

¢ Pick ={p(z)} <« —Vz(p(x)) < Jz(—-p(x)) = —p(s) < {—p(s)}:
{{—-p(s)}, {p(x), ()}, {—p(x), 7P(y)}}
res. [z > s]

= {{—-p(s)}, {r(v)}, {—-p(x), ~p(y)}}

res. [y +— s]

= {{}>{—-p(z), 7p(y)}}
- 0. (197)

e So, in conclusion, we have

{{r(z),p(¥)}, {—p(z), ~p(y)}} F 0. (198)
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Factorization

e In general, we account for multiple occurrences of unifiable predicates in
a clause by means of factorization rules.

e Given
1. the first-order clause ¢ and

2. two atomic formulas p(si,...,S,) and p(t1,...,t,) whose
syntactical equation is solvable, i.e., we can determine the unifier

p=mgu(p(Siy...s8n)P(t1y...,tn)). (199)
e Then, these are the definitions of the factorization rules:
cU{p(s1s:-+38n)sP(t1y...,1n)}
coepUAp(st, ..., sn)p}

and
cU AJNQA%HV coey mivw J@AﬁHw O uﬂivv
Soep U {p(S1y...ySn)}
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Factorization: example

e Returning to the above example, application of the factorization rules
produces

{{p(z),p(y)}, {—p(x), "p(y)}}
T e} {~p@), ~p()}}

fact.

= {{r(v)}; {-p(¥)}}

res. []

= 0.
(200)

D. Suendermann Logic January 28, 2012 117



Unification /resolution /factorization: exercise

e Can you derive contradiction from the following clause sets?

a) My = {{-p(y,v)}, {p(f(x),y),p(y,9(v))}}

b) M> = {{p(z,y),p(g9(v),v),p(z,v)}, {—-p(z,y), ~p(g(v),v)}}
c) Ms = {{p(=, f(2)),p(g(uv),v),p(g(u), f(2))}}

d) My = {{p(f(g(u)),v), =p(f(2),v)},{—-p(z,y), ~p(g(v),v)}}
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First-order version of Davis and Putnam: resolution function

e Similarly to the function cut introduced for the definition of the DP
algorithm in propositional logic, we introduce the function res for
first-order logic.

e The function res applies the resolution rule to a set of clauses Cy with
respect to a literal (unit clause).

e As opposed to cut, it does not drop any clauses from Cy but simply adds
conclusions from the resolution rule to the clause set.

e The reason that clauses are not dropped is that different atomic formulas
may be based on the same predicate but different arguments which may
produce a different unifier and, hence, a different result clause.

e If the original clause would have been dropped, this different clause
would have been missed.
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First-order version of Davis and Putnam: resolution function (examples)

e Example 1:

res({{p(x), ~q(f(t))},{a(x)}},q(x)) =
{{p(x), ~a(f()}, {r(f(®))},{a(x)}} (201)

e Example 2:

res({{pr(y), ~q(x)}, {p(f(v)), ~a(z)}, {—p(x)}}, -p(x)) = (202)
{{r(y), q(x)},{—~aq(z)}, {p(f(v)), ~q(x)}, {—a(f(y))},{—-p(z)}}

e Example 3 (infinite loop):

Co = {{-p(x),p(f(x))} {p(x)}}
C, : res(Co, p(x))
= {{-p(@),p(f(x))}, {p(f(x))}, {p(x)}}
= {{—p(),p(f(x))}, {p(f(¥))},{p(x)}}
Cy := res(C1,p(f(y)))
= {{—p(), p(f ()}, {p(f(f ()}, {p(f ()}, {p(x)}}
Cs := res(Ca,p(f(f(y)))) --. (203)
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First-order calculus: example

e We have now learned all the pieces necessary to apply first-order calculus
in a systematic way.

e Let us reiterate on the involved steps by means of an example.

e This is our knowledge base:
a) Every dragon is happy if all his children know how to fly.
b) Every red dragon knows how to fly.
c) Children of red dragons are red.

e Now, let us try to prove whether or not

d) All red dragons are happy.
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First-order calculus: example (cont.)

e To get started, we define a signature X, = (V, F, P, arity) with
V ={z,y}
F={}
P={rf,h,c}
arity = {(r, 1) (£, 1) (h,1) (c,2)}
e We assume that the universe contains all dragons.

e The predicates have the following interpretations:
— r(x) is 1 iff x is red.
— f(x) is 1 iff x knows how to fly.
— h(x) is 1 iff x is happy.
— c(xz,y) is 1 iff x is y's child.
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First-order calculus: example (cont.)

e Formalizing knowledge base and claim:

a) f1:=Vz(Vy(c(y,z) — f(y)) — h(z))
b) f2 :=Va(r(z) — f(x))

c) f3:=Vz(Jy(c(z,y) Ar(y)) — r(z))
d) fa1:=Vz(r(z) — h(x))

e Now, to see whether the claim d) can be derived from the knowledge
base a) to c) is to prove that

Fi=FhNf2Nfs— fa (204)

is universally valid.
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First-order calculus: example (cont.)

e This is the same as to prove that —f is a contradiction:

—f —(fiNfa A fs— fa)

(= (fL A F2 A f3) V fa)

==(f1 A f2 A f3) V = fa)

(fi AN f2 A f3) AN fa

JiNfa N fsAfa (205)

e Next, we need to turn —f into a set of clauses.

!

P11

e This can be done by turning fi, f2, f3, and —f4 individually into clausal
normal form.
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First-order calculus: example (cont.)

fi

111111

I 1

!

fa

!

!

Va(Vy(c(y, @) — F(y)) = h())
Vo (Yy(~e(y, 2) V £()) — h(@))
Va(=Vy(—e(y, @) V £ () V h(=))

Vo (Ey(~(e(y: @) V £(1)) V h())

Vo (Ey(~e(y, @) A =F(y)) V h())

Ve (Ey(c(y, @) A ~f () V h(@))

Vady(c(y, @) A =F(y) V h(@))

Va(e(s(@), @) A~f(s(2)) V h())
va((e(s(@), @) V h(@)) A (+F(s(@)) V h(@)))
{e(s(@), @), (@)}, {~F(s(2)), h(@)}}
Va(r(@) — ()

Va(-r(@) V f())

{-r(@), (@)}

(206)

(207)
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First-order calculus: example (cont.)

fs <= Vz(Fy(c(z,y) Ar(y)) — r(x))
< Ve(-Jy(c(z,y) Ar(y)) V r(z))
— Va(Vy(-(c(z,y) Ar(y))) Vv r(z))
< Ve (Vy(-c(z,y) V -r(y)) Vr(z))
< Vz,y(-c(z,y) vV -r(y) Vr(z))
= {{-c(z,y), r(y),r(x)}} (208)
~fa < Vae(r(z) — h(z))
— —WVx(—-r(x)V h(x))
< Jx(=(-r(z) V h(z)))
— dx(r(x) A -h(x))
~ r(t) A h(t)
< {{r@®)},{—=h(t)}} (209)
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First-order calculus: example (cont.)

e Applying the DP algorithm:

QO .

{{c(s(z), ), h(x)},{—~Ff(s(x)), h(x)}, {-r(z), f(z)},
{—c(z,y), 7r(y),r(x)}, {r(t)}, {-h(t)}}

res(Co, (1))

{{c(s(z), ), h(x) }, {~f(s(x)), h(x)}, {-r(x), f(x)}, {f (1)},
{—c(z,y), 7r(y), r(x)}, {—c(z, t), r(x) }, {r(t)}, {=h(t)}}
res(C1, —h(t))

{{c(s(z),z), h(x)}, {c(s(t),t)}, {~f(s(x)), h(x)}, {~f(s(1))}
{—r(z), f(x)}, {f ()}, {-c(z, y), 7r(y), r(2)}, {—e(z, t), r(x) },
{r)}, {-h(®)}} (210)
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First-order calculus: example (cont.)

Cs res(Cs, c(s(t),t))
= {{c(s(z), ), h(x)},{c(s(t),t)}, {~Ff(s(x)), h(x)}, {~Ff(s(t))},
{—r(x), f(x)}, {f ()} { ez, y), ~r(y), r(x)},
{—r(t),r(s(t))}, {—c(z, t),r(x)},{r(s(t))},{r)}, {-h(t)}}
Cy : res(Cs,7r(s(t)))

{{c(s(x), x), h(x)}, {c(s(t), )}, {~f(s(x)), h(x)}, {=f(s(?))},
{—r(x), f(x)}, {f(s@) L, {f @)}, {—el=z, y), 7r(y), r(x)},
{—c(z,s(t)), r(x)}, {-r(t),r(s(t))}, {—-c(z, 1), r(x)}, {r(s(t))},
{r(t)},{—h(t)}} (unsatisfiable) (211)
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First-order calculus: exercises

e We know that
Sets can only be contained in sets not contained in the Suendermann set.
Now, prove that

The Suendermann set does not contain itself.

e Given the three properties of a total order
1) a < b and b < c implies a < c¢ (transitivity),
2) a <b,b<a,ora=hbis true (trichotomy), and
3) a < a is not true (anti-reflexivity),

prove the reflexivity of the equivalence (i.e. a = a).
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Prolog

e Prolog (programming in logic) is programming language associated with
artificial intelligence as well as computer linguistics.

e In accordance with the architecture of XPSs, the main components of
logical programming are
1. a knowledge base (facts and rules),
2. an inference engine.

e Advantage of logical programming is that one does not have to develop

an algorithm to solve the problem since this job is done by the inference
engine.

e Instead, we describe the problem by means of logical formulas.

e The open-source SWI-Prolog is available as part of the major Linux
distributions as well as Cygwin (http://cygwin.com) or can be obtained

from

http://www.swi-prolog.org
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Facts and rules

e Facts are atomic formulas with the Prolog syntax

p(t1,...,t,) (212)

featuring the predicate p and the terms t¢4,...,t,.

e All the variables in facts are universally bound, i.e., Eq. 212 represents
the logical formula

VEiyeoosTm(P(t1y. .. 5tn)). (213)
e Rules are conditional propositions with the Prolog syntax
A : .mHu...u.mz. AMHN_.V

featuring the atomic formulas A, B4,..., B,.

e Again, all the variables in rules are universally bound, so, Eq. 214
represents the formula

Vi,...,8m(B1 A... N B, — A). (215)

e This generally requires formulas to be given as Horn clauses.
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Some conventions

e The first character of variables is a capital letter or an underscore.
e The first character of predicates or functions is a lower-case letter.
e The predicate true represents validity.

e The symbols +, -, *, /, . are function symbols you can use in infix
notation.

e The symbaols <, >, =, =<, >=, \=, ==, \== are predicate symbols you can
use in infix notation. Note that

== tests for equality,
\== tests for inequality, and

= is the unification operator.
e The symbol \+ (or, alternatively, not ()) is the negation operator.
e The symbol 7 is used for comments.

e The symbols , and ; is used for conjunction and disjunction, respectively.
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On Prolog’s disjunction

e The following derivation shows that disjunctions in Prolog rules are
effectively no additional feature:

A:—Bq;...5B,. B,vVv...Vv B, — A.
-~(B;V...VB,)V A
—B{A...A-B, VA
(-B1VA)A...AN(—B, V A)
A:—Bj.

0

t ¢ ¢

A: —B,. (216)
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An example

e Let us now consider a realistic example:
— All students are smart.
— Whoever is smart is powerful.
— Whoever is computer scientist and professor is powerful.
— Computer scientists are crazy.
— Alan is a student.
— Brad is a student.
— Colin is a computer scientist.

— Colin is a professor.
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An example (cont.)

e This is the respective Prolog code (see student.pl in the auxiliary
package kbs_*.zip):

smart (X) : -student (X) .
powerful (X) : —smart (X) .
powerful (X) :—cs(X) ,prof (X).
crazy(X) :-cs(X).

student (alan) .

student (brad) .

cs(colin).

prof (colin).

0 N o OB W -
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An example (cont.)

e We want to find out whether

there is a powerful and crazy individual.

e The respective logical formula is

Jx(powerful () A crazy(x)). (217)

e In order to find out, we first launch Prolog with the command

pl
and get the command prompt

...VI

e To load our knowledge base, we type
consult (student) .
e Now, we can use the Prolog syntax of Eq. 217 to check the validity of
our conjecture:

powerful (X),crazy(X).
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An example (cont.)

e We obtain the response
X = colin

telling us that Colin is a powerful and crazy individual.

e In order to identify other potential candidates, we type
resulting in the response
No

which indicates that there are no more solutions to the problem.

D. Suendermann Logic January 28, 2012 137



Prolog’s inference algorithm

e We are given the Prolog program P consisting of a number of rules of

the form
R:=A:—-B,,...,B, (218)
and a query of the form
G=Q1,...,Qn. (219)
e Here, facts are expanded to rules by
A — A: —true. (220)

e The inference algorithm works as follows:

1. Search (in order of appearance) all the rules A in P, for which there
exists a unifier

if =t
= ] if Q1 rue (221)
mgu(Q1, A) otherwise
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Prolog’s inference algorithm (cont.)

2. In case there are multiple such rules,

a) select the first rule (in order of appearance),

b) set a choice point (CP) to perform a different selection at this
point in case it becomes necessary at a later moment.

3. Here, two cases are distinguished:
a) m + n = 1: This means success, and Prolog returns the last
non-empty .
b) Otherwise, we recursively continue with the query
G:=Bip,..., B, Qapty...,QnLt. (222)

If we do not find a solution, we return to the last choice point
reversing the replacements G :

G 1 accordingly.
e Negation is implemented in Prolog as negation as failure.
o le., if Q1 in 1 is of the syntax not(Q?) the algorithm tries to prove Q.

e If it succeeds, we know that (), is false, otherwise, we assume it is true.
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Prolog’s inference algorithm: example

ID|CP |G R In
1 |1 |powerful(X),crazy(X) | powerful(X) : —smart(X)||]
2 |1 |smart(X),crazy(X) smart(X) : —student(X) |[]
3 |3 |student(X),crazy(X) |student(alan) : —true (X +— alan]
4 |3 |true,crazy(alan) |
5 |3 |crazy(alan) crazy(X) : —cs(X) [ X +— alan]
6 [3 |cs(alan) cs(colin) : —true Q
7 |1 |student(X),crazy(X) |student(brad) : —true [ X +— brad]
8 |3 |true,crazy(brad) |
9 (1 |crazy(brad) crazy(X) : —cs(X) [ X +— brad]
10|1 |cs(brad) cs(colin) : —true Q
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Prolog’s inference algorithm: example (cont.)

ID|CP |G R U

11 powerful(X), crazy(X) powerful(X) : —cs(X), prof(X)|]]

12 cs(X),prof(X), crazy(X) cs(colin) : —true (X +— colin]
13 true, prof(colin), crazy(colin)

14 prof(colin), crazy(colin) prof(colin) : —true

15 true, crazy(colin)

16 crazy(colin) crazy(X) : —cs(X) [ X +— colin]
17 cs(colin) cs(colin) : —true |

18 true |

Prolog’s response is hence: [ X +— colin].
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Drawbacks of Prolog’s inference algorithm

e Consider the Prolog program:
1 a:-not(true).

e Let us query whether a:

ID | CP | G R v
1 a a : —not(true) | (]
2 true ]

e The query infers false by negation as failure (indicated by * which means
that a result derived from this step needs to be inverted).

e This, however, does not coincide with our understanding of the semantics
of the implication: L. — a is true independent of whether a or not.

e The reason is Prolog’s closed-world assumption: It assumed the database

is complete; l.e., if the answer cannot be deduced, it is false.

e Even worse, the response to the query not(a) is true due to two
applications of inversion.
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Drawbacks of Prolog’s inference algorithm (cont.)

e Consider the Prolog program:

1 a:-b.
2 b:-a.
e Let us query whether a, b:

ID | CP | G R 1
1 a,b | a:—b
2 b,b | b: —a
3 a,b | a: —b
4 b,b | b: —a

e The program enters an infinite loop even

proven true in a few steps:

(b —-a)A(a—b)—>aAbs T.

though the query could be

(223)

e The nature of Prolog being based on Horn logic and its negation and

loop handling show a considerable weakness of its inference algorithm.
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Lists

e Apart from Prolog’s inference engine, a predominant feature is its list

handling.

e Lists can be written in three ways:

1. .(s,t) defines a list with the element s and the tail ¢;

2. [s|t] does the same;

3. [s1,..., 8] defines a list with the elements s1,..., s,

e Accordingly, these are equivalent lists:

(1,.(2,.(3,]))) (224)
[1[21[31[]]]] (225)
1,2, 3] (226)
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Lists: example function

e We want to design a function cat that concatenates two lists L1 and L2
resulting in the list L2.

e In the world of logical programming, this could be conceived as the 3-ary
function cat(L1,L2,L3) which becomes true iff L3 is the concatenation of
L2 and L2.

e A respective Prolog program is:

1 cat([X|L1],L2, [X|L3]):-cat(L1,L2,L3).
2 cat([],L,L).
e This program reads

An empty list concatenated with a list L results in the same list L
(Fact 2). Furthermore, if the concatenation of the lists L, and L,

results in L3, then L, with an preceding element X concatenated

with L, must result in Lz with the same preceding element X
(Rule 1).

e In the following, we run an example to understand the program'’s
functionality.
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Lists: example function (cont.)

ID|CP|G R u
1 om..nA:oMT ng %TM\V om..ng»vm_hlghmo TN_N}&V ¢ = TN = :Thu = ﬁMT
OmdAthhwv N.\wv Ly — _”wvm.LvM\ = T._N.\..w:
2 cat([2], [3,4], Ls) |cat([X'|L}], L%, [X'|L3]) : — |[X' — [2],L] — [],
cat(L}, L5, L3) L5 — [3,4], Ls — [2|L3]]
3 cat([], [3,4],Ls) |cat([X"|LY],L%,[X"|L%]) : — |
cat(LY, Ly, L%)
4 cat([], [3,4], Ls) |cat([], L, L) : — [L +— [3,4], L3 — [3,4]]

Prolog’s response is hence:
Y — [1|L3s]
— [1][2|L5]]
—  [1][2][3, 4]]]
= [1,2,3,4] (227)
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Lists: example function (cont.)

e You may perceive some flavor of Prolog’s elegance if you consider which
use cases the above example function features:

— Concatenate two lists:
cat([1,2], [3,4], Y). (228)

— Check whether a list resulted from another list by way of
concatenation:

cat([1,2], Y, [1,2, 3, 4]). (229)
— Find all possible splits of a list into two lists:
cat(X,Y, [1,2,3,4]). (230)
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How order matters

e Consider the following program:

1 a.
2 a:-b.
3 b:-a.
e We get the query result
a. — Yes. (231)
e Now, we reorder the rules:
1 a:-b.
2 a.
3 b:-a.
e This, time, the query result is
a. — ERROR : Out of local stack. (232)

e The inference algorithm keeps accessing Rule 1 over and over again.

e Other than the example on Page 145, this time, we do not get an infinite
loop but a stack overflow.

e This is because Prolog has to create a choice point for every recursion
due to the presence of the alternative Rule 3.
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How order matters (cont.)

e Consider the following program:

1 s([X], [X1).
2 s([A,B],[A,D]):-s([B],[D]),A<D.

e We get the query result
s([1,2],X). — X=1[1,2]. (233)

e Now, we switch the elements in Rule 2’s body:

1 s([X], [XD).
2 s([A,B],[A,D]):-A<D,s([B], [D]).

e This time, we get

s([1,2],X). —  ERROR : Arguments are not sufficiently instantiated.

e The inference algorithm tries to evaluate A < D first, before D had been
determined by way of evaluating s([B], [D]).
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Symbolic vs. numerical computation

e Consider the following program:

1 pX,Y):-Y==X+1.

2 q(X,Y):-Y>X+0.9999999,Y<X+1.0000001.
3 r(X,Y):-Y is X+1.

2 s(X,Y):-Y=X+1.

e We get the following query results:

p(1,2). — No.

q(1,2). — Yes.

r(1,2). — Yes.

s(1,2). — No.

p(1,Y). — No.

q(1,Y). — ERROR : Arguments are not sufficiently instantiated.
r(1,Y), — Y=2.

s(1,Y). — Y=1+41.
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Symbolic vs. numerical computation (cont.)

e The check for equality (==) fails due to issues with Prolog’s numerical
precision.

e Rather than for equality, g checks for a small range around the expected
value and thereby succeeds. When queried with the free parameter Y,
however, Prolog is not able to limit the (real-valued) search space and
complains about insufficient instantiation.

e Prolog’s keyword is assigns the exact value of X 4+ 1 to Y and therefore

succeeds. Accordingly, the free parameter Y gets assigned the sum of 1
and 1.

e The unification operator = tries to solve the syntactical equation
2 = 1 4+ 1 which is not possible since different function symbols cannot
be unified. Hence, it fails. When queried with a free parameter, however,
the syntactical equation is Y = 1 + 1 whose solution is the result set.
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Prolog: exercises

e Write programs to
1) determine the maximum of two numbers (2 lines)
2) calculate the factorial (2 lines)
3) uniq a list (3 lines)
4) find identical elements in two lists (3 lines)

5) sort a list (4 lines)
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Appendix

Solutions to selected exercises
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Conjunctive normal form: solution to exercise

e Transform into CNF:

QNH%lMldI,I_Jm@\/\lw (234)

1. g< (—aVb)A(—-bVa) (235)
—— > > s

2. a & - pVvVqg—r

& —(-pVag Vr (236)

3. a & pA—gVrT (237)
—a & —(pA-g)A-r

& (-pVag)A-r (238)

-b & sA-t (239)
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Conjunctive normal form: solution to exercise (cont.)

(-pVg)AN-rVDb

(—=pV qVb)A(—rVb) (240)
(—pVqgV-sVE)A(-rV-asVi)

sAN-tVa

rAm<@v\>rA|&<@v\ (241)

" "

e i
PAN—qVTrVs

(pVrVvs)A(—qgVrVs) (242)
(pVrV-at)A(—qgVrV-t) (243)

t ¢ ¢ ¢

[
U

A:HI_muv q, S, wvw Al_ﬁ S, ﬁwq Acf r, mvw A“HI_QV r, .wHJ
Aﬁ“ r, I_SJ A“HI_Qv T, I&MW AMNEV
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First-order calculus: solution to exercise

e We know that

Everybody loves only those people who do not love a gardener.

e Let us use the predicates
— l(x,y) which is 1 iff  loves y and

— g(x) which is 1 iff x is a gardener.

e Let us further use an auxiliary predicate

— n(x) which is 1 iff x does not love a gardener.

e Using n(x)’s definition, the above axiom could be written as
Every x loves only those y for which n(y)

which can be formally expressed as

fi=Va,y(l(z,y) — n(y)). (245)
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First-order calculus: solution to exercise (cont.)

e Expressing n(y) in terms of I(y, z) and g(z):
n(y) < —3z(U(y, z) A g(2)). (246)
e Hence, Formula 248 becomes
e Ve,y(l(zr,y) — -32(U(y, 2) A g(2)))
= Vr,y(-l(z,y) vV -3z((y, z) A g(2)))
= Vr,y(-l(z,y) vV Vz(=(l(y, 2) Ag(2))))
= Vr,y,z(0l(z,y) V -l(y, z) V 7g9(2))
< {{-l(z,y), ~l(y, 2), 79(2)}} (247)
e Our conjecture is that
Gardeners do not love themselves

which can be formally expressed as

Ve (g(x) — —l(x,x)). (248)

g :

D. Suendermann Logic January 28, 2012 157



First-order calculus: solution to exercise (cont.)

e To prove g, we need to conjunctively combine f with g’'s negation, so,

let us attack the latter now:

JQ —>

<«

<«
<>

!

—(Va(g(z) — —l(z,x)))
(Ve (—g(z) V —l(z,z)))
Fx(=(—g(x) V l(z,z)))
Jx(g(x) A l(x,x))

g(s) Nl(s,s)

{1g9(s)}, 1l(s,5)}}

(249)
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First-order calculus: solution to exercise (cont.)

e Applying the DP algorithm:

Co := {{-l=,y),l(z,2),9(z)},{g9(s)}, {l(s,5)}}
C: : res(Co, g(s))
= {{~l(=,y), U=z, 2), ~g(2) }, {-l(z, y), ~l(z,s)},
{9(s)}, {l(s,9)}}
Cy : res(C1,1(s, s))

— A:HI_NAHw @vqI_NAHVvaJQANVHYVAJNA%“NV“JQANVM“
{~l(z,y), ~l(xz,8)}, {l(s,8)},{g(s)}, {l(s,s)}} (250)

e This proves that the conjecture is true.
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