
1 Predicate logic (4 pts)

1.1 Task

Translate the following natural language sentences into formulas of predicate
logic:

a) Every student visiting the Oktoberfest visits the Wasen as well.

b) However, not every student visiting the Wasen visits the Oktoberfest.

c) No student older than 21 visiting the Wasen remains sober.

Use the following predicates/functions:

• IsStudent(x): ⊤ if x is student; ⊥ otherwise

• Visits(x, f); f ∈ {Wasen,Oktoberfest}: ⊤ if x visits f ; ⊥ otherwise

• IsGreaterThan(x, y); x, y ∈ R: ⊤ if x > y; ⊥ otherwise

• age(x): returns x’s age in years

• IsSober(x): ⊤ if x is sober; ⊥ otherwise

1.2 Solution

a) IsStudent(x) ∧ Visits(x,Oktoberfest) → Visits(x,Wasen)

b) ¬∀x(IsStudent(x) ∧ Visits(x,Wasen) → Visits(x,Oktoberfest)), or
∃x(IsStudent(x) ∧ Visits(x,Wasen) ∧ ¬Visits(x,Oktoberfest))

c) ¬∃x(IsStudent(x)∧IsGreaterThan(age(x), 21)∧Visits(x,Wasen)∧IsSober(x)),
or
IsStudent(x)∧IsGreaterThan(age(x), 21)∧Visits(x,Wasen) → ¬IsSober(x)

1



2 Resolution (9pts)

2.1 Task

Assume the following knowledge base:

(a) C ↔ A ∧ ¬C

(b) ¬D → D

(c) A ∨ ¬D → ¬C

Further, assume the following formula

(d) A ∨ ¬D

Apply the resolution algorithm to prove or disprove (d).
.
Which of the following statements is true:

1) (d) can be proven given the knowledge base.

2) (d) can be disproven given the knowledge base.

3) (d) can neither be proven nor disproven given the knowledge base.

2.2 Solution

Let us attempt to prove (d)’s negation. That is, we have to conjunctively
combine all the sentences in our knowledge base ((a) to (c)) and (d) and derive
the result’s CNF:

A C D (a) (b) (c) (d) (a)∧(b)∧(c)∧(d) clause ID
0 0 0 1 0 1 1 0 A ∨ C ∨ D (e)
0 0 1 1 1 1 0 0 A ∨ C ∨ ¬D (f)
0 1 0 0 0 0 1 0 A ∨ ¬C ∨ D (g)
0 1 1 0 1 1 0 0 A ∨ ¬C ∨ ¬D (h)
1 0 0 0 0 1 1 0 ¬A ∨ C ∨ D (i)
1 0 1 0 1 1 1 0 ¬A ∨ C ∨ ¬D (j)
1 1 0 0 0 0 1 0 ¬A ∨ ¬C ∨ D (k)
1 1 1 0 1 0 1 0 ¬A ∨ ¬C ∨ ¬D (l)

Now, the algorithm iteratively applies the resolution rule to combinations of
clauses, e.g.

• to (e) and (f) resulting in A ∨ C (m)

• to (g) and (h) resulting in A ∨ ¬C (n)

• to (i) and (j) resulting in ¬A ∨ C (o)

2



• to (k) and (l) resulting in ¬A ∨ ¬C (p)

• to (m) and (n) resulting in A (q)

• to (o) and (p) resulting in ¬A (r)

• to (q) and (r) resulting in ⊥ (s)

(s) proves contradiction and, therefore, that (d)’s negation holds true, i.e., (d)
could be disproven. Attempting the same steps with (d)’s negation rather than
(d) itself produces no solution, i.e., there is no contradiction in the knowledge
base to begin with. Accordingly, statement 2) is true.

3



3 A∗
(9pts)

3.1 Task

We are given the following graph:

2

1
2

3

9

6

9

8

7

4

5

4
1

1

9

3

5

5 8

0

From the figure, we can derive the starting node (1) and the set of target nodes
(T = {7}). Furthermore, we can derive the set of neighbors N(x) for each node
x as well as the cost c(x, y) for changing from node x to node y being the arc
labels.

Perform an A∗ search using the following table providing the heuristic esti-
mate h(x):

x 1 2 3 4 5 6 7 8 9
h(x) 2 2 9 4 8 8 3 4 8

How do OPEN and CLOSED sets as well as PATH(7) look like when hitting
the target?

4



For this task, use the A∗ convention introduced in the class as depicted in
the following diagram:

5



3.2 Solution

ID step x N(x) PATH(x) OPEN CLOSED g(x) f(x)
1 init 1 {3,4} (1) {1} {} 0 2
2 pick min 1 {3,4} (1) {} {1} 0 2
3 iterate 3 {5,8} (3,1) {3} {1} 9 18
4 4 {2} (4,1) {3,4} {1} 4 8
5 pick min 4 {2} (4,1) {3} {1,4} 4 8
6 iterate 2 {1,6} (2,4,1) {2,3} {1,4} 5 7
7 pick min 2 {1,6} (2,4,1) {3} {1,2,4} 5 7
8 iterate 1 {1,2,4} 7
9 6 {7} (6,2,4,1) {3,6} {1,2,4} 10 18
10 pick min 3 {5,8} (3,1) {6} {1,2,3,4} 9 18
11 iterate 5 {7} (5,3,1) {5,6} {1,2,3,4} 18 26
12 8 {9} (8,3,1) {5,6,8} {1,2,3,4} 10 14
13 pick min 8 {9} (8,3,1) {5,6} {1,2,3,4,8} 10 14
14 iterate 9 {7} (9,8,3,1) {5,6,9} {1,2,3,4,8} 13 21
15 pick min 6 {7} (6,2,4,1) {5,9} {1,2,3,4,6,8} 10 18
16 iterate 7 {} (7,6,2,4,1) {5,7,9} {1,2,3,4,6,8} 15 18
17 pick min 7 {} (7,6,2,4,1) {5,9} {1,2,3,4,6,7,8} 15 18

Alternative when picking node 6 at ID 10:

ID step x N(x) PATH(x) OPEN CLOSED g(x) f(x)
1 init 1 {3,4} (1) {1} {} 0 2
2 pick min 1 {3,4} (1) {} {1} 0 2
3 iterate 3 {5,8} (3,1) {3} {1} 9 18
4 4 {2} (4,1) {3,4} {1} 4 8
5 pick min 4 {2} (4,1) {3} {1,4} 4 8
6 iterate 2 {1,6} (2,4,1) {2,3} {1,4} 5 7
7 pick min 2 {1,6} (2,4,1) {3} {1,2,4} 5 7
8 iterate 1 {1,2,4} 7
9 6 {7} (6,2,4,1) {3,6} {1,2,4} 10 18
10 pick min 6 {7} (6,2,4,1) {3} {1,2,4,6} 10 18
11 iterate 7 {} (7,6,2,4,1) {3,7} {1,2,4,6} 15 18
12 pick min 7 {} (7,6,2,4,1) {3} {1,2,4,6,7} 15 18

6



Alternative when picking node 3 at ID 12:

ID step x N(x) PATH(x) OPEN CLOSED g(x) f(x)
1 init 1 {3,4} (1) {1} {} 0 2
2 pick min 1 {3,4} (1) {} {1} 0 2
3 iterate 3 {5,8} (3,1) {3} {1} 9 18
4 4 {2} (4,1) {3,4} {1} 4 8
5 pick min 4 {2} (4,1) {3} {1,4} 4 8
6 iterate 2 {1,6} (2,4,1) {2,3} {1,4} 5 7
7 pick min 2 {1,6} (2,4,1) {3} {1,2,4} 5 7
8 iterate 1 {1,2,4} 7
9 6 {7} (6,2,4,1) {3,6} {1,2,4} 10 18
10 pick min 6 {7} (6,2,4,1) {3} {1,2,4,6} 10 18
11 iterate 7 {} (7,6,2,4,1) {3,7} {1,2,4,6} 15 18
12 pick min 3 {5,8} (3,1) {7} {1,2,3,4,6} 9 18
13 iterate 5 {7} (5,3,1) {5,7} {1,2,3,4,6} 18 26
14 8 {9} (8,3,1) {5,7,8} {1,2,3,4,6} 10 14
15 pick min 8 {9} (8,3,1) {5,7} {1,2,3,4,6,8} 10 14
16 iterate 9 {7} (9,8,3,1) {5,7,9} {1,2,3,4,6,8} 13 21
17 pick min 7 {} (7,6,2,4,1) {5,9} {1,2,3,4,6,7,8} 15 18

Solution with an alternative heuristic estimate h(x):

x 1 2 3 4 5 6 7 8 9
h(x) 6 5 2 3 6 0 0 8 3

ID step x N(x) PATH(x) OPEN CLOSED g(x) f(x)
1 init 1 {3,4} (1) {1} {} 0 6
2 pick min 1 {3,4} (1) {} {1} 0 6
3 iterate 3 {5,8} (3,1) {3} {1} 9 11
4 4 {2} (4,1) {3,4} {1} 4 7
5 pick min 4 {2} (4,1) {3} {1,4} 4 7
6 iterate 2 {1,6} (2,4,1) {2,3} {1,4} 5 10
7 pick min 2 {1,6} (2,4,1) {3} {1,2,4} 5 10
8 iterate 1 {1,2,4} 7
9 6 {7} (6,2,4,1) {3,6} {1,2,4} 10 10
10 pick min 6 {7} (6,2,4,1) {3} {1,2,4,6} 10 10
11 iterate 7 {} (7,6,2,4,1) {3,7} {1,2,4,6} 15 15
12 pick min 3 {5,8} (3,1) {7} {1,2,3,4,6} 9 11
13 iterate 5 {7} (5,3,1) {5,7} {1,2,3,4,6} 18 24
14 8 {9} (8,3,1) {5,7,8} {1,2,3,4,6} 10 18
15 pick min 7 {} (7,6,2,4,1) {5,8} {1,2,3,4,6,7} 15 15

7



4 Expert and dialog systems (5 pts)

4.1 Task

A call router for a banking system contains a module that can ask callers two
questions:

q1) Are you calling about your credit card (C) or your account (A)?

q2) Do you want to order (O), cancel (L), or change (H) your credit card/account?

The following business logic table of the module shows which combinations of
responses to q1 and q2 route to which destination di (r1,i, r2,i). Based on
statistics drawn from the bank’s call centers, for each response combination,
historic counts ci are available.

i r1,i r2,i di ci/1000
1 C O orderCard 11
2 C L agent 17
3 C H changeCard 36
4 A O agent 9
5 A L agent 13
6 A H changeAccount 14

Considering that a call router should minimize the expected number of user
turns and, therefore, should only ask necessary questions, which of the following
statements is true:

a) The optimal sequence of questions to ask is q1, q2.

b) The optimal sequence of questions to ask is q2, q1.

c) The sequence of questions does not make a difference.

Justify your answer and calculate the expected number of user turns (average
number of asked questions) for the scenarios a) and b).

4.2 Solution

In the business logic table, we can see that no matter which response is given
to q1 (C or A), we do not know the destination yet, so, q2 needs to be asked as
well. This makes the expected number of user turns

E(q1, q2) = 2.

On the other hand, when q2 is asked first and the response turns out to be L, we
know that the destination is agent and we do not need to ask a second question
making b) the true statement. In the other cases (O or H) the destination is
still ambiguous and q1 has to be asked as well. Thus, with the probability p(L)

8



we ask one, with 1−p(L) two questions which translates to the expected number
of user turns for the opposite direction:

E(q2, q1) = p(L) + 2 · (1 − p(L))

= 2 − p(L)

= 2 −
17 + 13

11 + 17 + 36 + 9 + 13 + 14

= 2 −
30

100
= 1.7

9


