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General remarks

e The most up-to-date version of this document as well as auxiliary
material can be found online at

http://suendermann.com
e Scripts and other materials by my colleague Dirk Reichardt covering
some of the topics discussed in this lecture:

http://wwwlehre.dhbw-stuttgart.de/ “reichard/index.php?

site=wbs
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Outline

e logic and computer-assisted proof
e intelligent search and problem solving strategies
e expert systems and dialog systems

e Prolog
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Propositional logic: tautology

e Ludwig Wittgenstein (1921): A tautology is a formula which is true in
every possible interpretation.

e examples:
- A A
— AV —A (excluded middle) [v/2]
— A — B <+ 7B — —A (contraposition) [outlet]
- A—-+B+-AVEB
- (A —> B)A (A — -B) —» —A (reductio ad absurdum)
- =(AAB) < —AV B (de Morgan’s law)
- (A—>B)AN(B—>C) —> (A — C) (syllogism)
- (AVB)A(A—C)AN (B — C) — C (proof by cases)
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Precedence and associativity of logical connectives

e Outermost parenthesis can be dropped:
(pANq) & pAg (1)

e Consider the following precedences:

operator | precedence

- 1 (strongest)
A 2
V 3
— 4

> 5 (weakest)

e E.g., we have:
(pANg) —(@qVvr) < pAg—gVr (2)
e Assume operators of the same precedence to be left-associative:

(p—>q) —>r <& p—qg—r (3)
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Tautology: exercise

e Prove that the following formula is a tautology
ANB—>C+ A— (B—C)
using
a) known equivalences,

b) a truth table.
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Clauses

e Multiple applications require sentences in propositional or 1st-order logic
to be given as a (conjunctive) set of clauses.

e A clause is a disjunction of literals.
e A literal is an atomic formula or its negation.

e These conditions are fulfilled by the conjunctive normal form (CNF):
A VI-1Ps; (5)
(]

e example for a propositional formula in CNF:

(~AV BV C)A(AV BV —C) (6)
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Conversion into CNF

e Among other ways, we can convert a given propositional formula into
CNF by

a) applying equivalences or
b) establishing a truth table.
e Example: We want to transform the formula
A— (B <+ C) (7)
into CNF.
a) A—> (B+C) & A— (—-BVvC)AN(BV-0))
& AV (-BVO)A(BV-O)
< (RAV-ABVCO)A(mAV BY-C) (8)

Another way to put this CNF is the set notation:
{{-A,B,-C},{-A,-B,C}}. (9)
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Conversion into CNF: example

b) The conjunctive combination of all those clauses producing the result 0
in the truth table is the CNF.

o
Q

B+~ C | A— (B<+ C) | clause

1 1 —AV BV -C
1 AV -BVC
1 AV BV -C
1 —AVBVC
1 AV BV -C
0
0
1

)

-AvV BV -C
-AV-BvVvVC

A
0
0
0
0
1
1
1
1 AvBvC

= O O == O O
N e B = S < N SO SR O
_ O O M = O O

e So, we are getting the same CNF here, too:

Al_k&<m<l_Qv>AI:ﬁ<l_m<Qv ﬁov
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Turning natural language into propositional formulas

e Inspector Watson is called to a jewelry store that has been subject to a
robbery where three subjects, Austin, Brian, and Colin, were arrested.

e After evaluation of all facts, this is known:

1. At least one of the subjects is guilty:

fi:=Av BvVC. (11)
2. If Austin is guilty he had exactly one accomplice:

fo:=A— BAN-CV-BAC. (12)
3. If Brian is innocent, so is Colin:

f3 := B — —C. (13)

4. If exactly two subjects are guilty, Colin is one of them. Hence, out of
three possible pairs of subjects, there is only one impossible:

.\.N . JAKQ\/m\/l_Qv. A”_.hv
5. If Colin is innocent then Austin is guilty:
.\um = C — A. A”_.mv

® Question: Who are the culprits?
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Who are the culprits: CNF

e A handy first step to approach this question is to turn all the involved
formulas into CNF:

.\.,H <~ *Tﬁ“m“ O@v

fo & A— BAN-CV-BAC

& ~AVBA-CYV-BAC

< (AVBV-AB)A(mAVBVO)

A=AV -CV -B)A(—mAV -CVC)

< {{—-A,B,C},{—-A,-C,—-B}}
fz & {{B,~C}}
fa < {{-A,-B,C}}
fs < {{C,A}} (16)

e Now, to answer our question, there are again several possibilities:
a) resolution,

b) truth table.
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Resolution

e Resolution (introduced 1965 by John Robinson) is a method to test the
validity of a formula or to find a solution to a set of assumptions.

e Resolution is defined in form of an algorithm and can, thus, be performed
by a computer program.

e We are given two clauses of a propositional formula in CNF: C; and Cs.

e We assume there is a literal L which exists in C; and whose complement
—L exists in Cs.

e Then, we can derive a resolvent R by merging the original clauses
eliminating the complimentary literals L and —L:

QHu kﬁH/\.../\kﬁi/\.N.\
Qwu .mH/\.../\.mS/\J.N.\
SR kQH/\.../\kQS\/\.mH/\.../\mS

e Exercise: Prove the resolution rule.
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Resolution algorithm

All sentences in the knowledge base (and the negation of a sentence we
may want to prove, the so-called conjecture) are conjunctively connected.

The resulting sentence is transformed into CNF represented by the set S
in set notation.

The resolution rule is applied to all possible pairs of clauses containing
complimentary literals producing the resolvent R.

Repeated literals are removed from R.

If R contains complimentary literals, it is discarded. Otherwise, R is
added to S, if it is not yet an element.

If the empty clause can be derived after an application of the resolution
rule, we have proven contradiction. This can either mean that the
knowledge base is inconsistent or that the negation of the sentence we
tried to prove is unsatisfiable, i.e., the conjecture follows from the
knowledge base.
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Resolution: example

e In our example, we want to find a solution to the facts in our knowledge

base:
K :={{A,B,C},{-A,B,C},{—-A,-C,—-B},{B,-C},{—-A,-B,C},{A,C}}

. v < i T
{a,b} — {B,C} =:g {c,e} — {-A,-B}=:1
{a,d} — {A,B}=:h {d,g} — {B}=:m
{b,d} — {-A,B} =:1 {e, f} — {—-B,C}=:n
{b,e} — {2A,C}=:j {f,it — {C}=:0
{c,d} — {—-A,-C} =k {i,l} — {—-A}=:p

e In conclusion, we find that Brian and Colin are guilty, Austin is not.

e We have to systematically try all combinations of clauses when searching
for a solution since if any of them had resulted in an empty clause, we
would have found that the knowledge base has no solution, i.e., it is

inconsistent in itself.
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Finding solutions using a truth table

e We can derive the same solution by means of a truth table:

A B Cl|la b c d e f| K
o 0 0;j0 1 1 1 1 0]O0
o o0 11 1 1 0 1 1|0
o 1 o}1 1 1 1 1 0] O
0O 1 1|1 1 1 1 1 1 1
1 0 o001 0 1 1 1 1|0
1 o 1,1 1 1 0 1 160
1 1 o1 1 1 1 0 10
1 1 1|1 1 0 1 1 1|0
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Resolution: example (cont.)

e Let us now try to prove whether Brad or Colin are culprits, so, we now
have to take the CNF of all the facts from our knowledge base

{{A,B,C}, {-A,B,C}, {-A,~C,-B}, {B,-C},{-~A,-B,C},{A,C}}

N "~ N

a b c d e Vi
and the CNF of the negated conjecture J := B Vv C, i.e.,

~J & ~(BV C) & {{-B},{~C}} (17)

g h

and try to derive an empty clause:
ib,gt — {0A,C}
if,i} — {C}
th,3y — {}

e In conclusion, we were able to prove that Brad or Colin are culprits.

* 17

]
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Finding solutions using a truth table (cont.)

e Again, the same result can be found when consulting the truth table:

A B C|la b ¢ d e f g h|KAN~AJ
o o o0 1 1 1 1 0 1 1 0
o o 1,1 1 1 O 1 1 1 O 0
O 1 o0/1 1 1 1 1 0 0 1 0
o 1 1,1 1 1 1 1 1 O O 0
1 0 o1 0 1 1 1 1 1 1 0
1 0 1}1 1 1 0 1 1 1 O 0
1 1 0o0}j1 1 1 1 0 1 O0 1 0
1 1 1}1 1 0 1 1 1 0 O 0
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1st-order logic

e 1st-order logic (aka as predicate logic) is an extemsion to propositional
logic.

e Main difference is its additional use of predicates, functions and
quantifiers.

e A predicate returns boolean, a function non-boolean values.

e A quantifier is an operator defining the scope of variables:
— V is the universal quantifier,

— dis the existential quantifier.
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1st-order logic: examples

e example functions:
— +asinx+vy
— any constant such as the numeral 1

— age(x) returning the age of the object x

e example predicates:
— >asinx >y
— propositional variables
— T and L

— isStudent(x) returning T iff x is a student

e terms:
1. Any variable is a term.

2. Any expression f(t1,...,t;), with the n-ary function symbol f and
the terms t,,...,t,, is a term.
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1st-order logic: examples on how to translate natural language into formulas

e All students are smart:

Vx(isStudent(x) — isSmart(x)). (18)

e There is a smart student:

Jx(isStudent(x) A isSmart(x)). (19)

e Every student who takes Knowledge-Based Systems repeats the
fundamentals of Logic.

Vx(isStudent(x) A takes(x, kbs) — repeats(x, logic)). (20)
e Every student loves some student:

Vx (isStudent(x) — Jy(isStudent(y) A loves(x,y))). (21)

e Billy has one brother:

Jx (isBrotherOf(x, billy) A Vy(isBrotherOf(y, billy) — = = y)). (22)
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Modal logic

e Modal logic extends the standards of formal logic with elements of
modality:

— possibility (Kripke 1959: “possible worlds”; operator ),

— necessity (operator [J).

e Each of them can be represented by the other with negation:
Op <+ ==, (23)
O <+ 0. (24)
e modal operators and quantifiers—the Barcan formulzae:
Jxdp — Odxy (25)
OJxp R Jdxde (Wittgenstein’s son) (26)
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Outline

e logic and computer-assisted proof

e intelligent search and problem solving strategies

e expert systems and dialog systems

e Prolog
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Search and problem solving: introduction

e Problem solving is the search for a solution in a given scenario.

e Questions raised by search algorithms at runtime include
— How good am | at the moment?

— How do | estimate what is still missing?

e Popular search families are
— local search (e.g. hill climbing)

— graph and tree traversal

- depth-first search (DFS)
- breadth-first search (BFS)
. A*

Suendermann Knowledge-Based Systems March 28, 2013
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Hill climbing

e Hill climbing is an iterative algorithm that

1. starts with an arbitrary solution x = xy to the problem with a
performance f(x),

2. incrementally changes a single element of x resulting in z/,

3. if the change improved the solution (i.e., f(x’) > f(x)), then the
x’), and the algorithm continues at Step 2.

solution is updated (x :

4. If no further improvement can be produced, the algorithm stops.

e Hill-climbers are well
suited for convex
surfaces.

e They will converge
to the global opti-

mum.

] iy 0 l 7
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Hill climbing: local maxima

e Hill climbing will find only local maxima.

e Hence, if f(x) is not convex, it may not find the global optimum.

e E.g., if the algorithm starts at a poor location in the following example, it
may not converge to the global maximum:

,H_,_‘.__,.,.#___nﬁ-_?.f.,..ﬂ_‘u + 2p-((-1.7)" +(y-1.7)")

I T

...
T

J.r '
ok

o y B .
ey et o gl
|-H-L|.| HL.H.,I.Lu.....-.liI T i ..-f...d-.l o S -

S ¥
s -

. u... Ay
il P
e .._..I.-I.. ——
ol S .

- ] r.
- .Il..hlh .
.|1-|.|i|.|1|.-|.-....1... ..-.|..|1-|1-“1.|-.|-I11|
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e Stochastic hill climbing, random walks, or simulated annealing try to
overcome this problem.
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Hill climbing: ridges

e Hill climbers adjust one vector element at a time.
e So, each step will move in an axis-aligned direction.

e If f(x) features a narrow ridge ascending in a non-axis direction, the
climber has to zig-zag.

e If the ridge’s sides are very steep, the
climber has to take tiny steps and,
therefore, may take an unreasonable
time to ascend.

e Gradient descend methods can over-
come this effect when f(x) is diffe-
rentiable.

e Another problem is when the search
space is flat around the current

search position (plateau).
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Simulated annealing

e Simulated annealing (SA) is a probabilistic heuristic to find the global
optimum of f(x).

e Name and inspiration come from the annealing in metallurgy.
e Each step of the SA algorithm replaces x with a random nearby z’.

e The randomization is based on a probability that depends on

- f(z) — f(2') and
— the temperature T', a parameter gradually decreased during the

process.

e Due to the randomness of picking x’, the method can escape local
optima.

e SA does not guarantee to reach the global optimum but increases
chances to do so.
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Graph traversal

e Graph traversal refers to a search algorithm visiting the nodes in a graph
in a particular manner.

e Starting at a root node S, all children are generated and added to an
open list.

e If all children of S are generated, S gets removed from the open list and
added to a closed list.

e Generation and expansion are performed until a goal node or leaf is
found.
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Graph traversal: 8-puzzle

1123
4 56
7|8
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Graph traversal: 8 queens puzzle

e Place

a chessboard that no two
queens attack each other.

e There

64
8

possible arrangments.

e But only 92 solutions.

8 chess queens on

are

— 4,426,165, 368

Suendermann
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Graph traversal: travelling salesman problem (TSP)

e Given a list of cities and
their pairwise distances,
find the shortest possible
tour visiting each city ex-
actly once.

e TSP is an NP-hard pro-
blem and belongs to the
most intensively studied
ones in optimization.
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Graph search algorithms

e exhaustive search algorithms
— depth-first search (DFS)

— breadth-first search (BFS)
— backtracking

e heuristic and statistical search algorithms
— best-first search
— A*

— minimax algorithm
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Exhaustive search algorithms

- DFS vs. BFS

Suendermann
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DFS: example

OPEN (stack)| CLOSED

1

4, 5, 10 1

3, 5,10 1, 4

2,8,9,5,10 | 1,4,3

9,8,9,5,10 | 1,4,3,2

8,9,5, 10 1,4,3,2,9

5, 10 1,4,3,2,9,8

7, 10, 10 1,4,3,2,9,8,5

10, 10 1,4,3,2,9,8,5, 7

6, 10 1,4,3,2,9,8,5,7,10
1,4,3,2,9,8,5,7,10, 6
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BFS: example

OPEN (queue)| CLOSED

1

4, 5, 10 1

5, 10, 3 1,4

10, 3, 7 1, 4,5

3,7,6,8 1, 4, 5, 10

7,6,8,2,9 1, 4, 5, 10, 3

6,8,2,9 1, 4,5,10, 3,7

8,29 1,4,5,10,3,7,6

2,9 1, 4,5,10,3,7,6, 8

9 1,4,5,10,3,7,6, 8, 2
1,4,5,10,3,7,6,8, 2,9
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Exhaustive search algorithms: modifications

e depth-limited search

— works exactly like DFS, but imposes a maximum limit on the depth of
the search.

e iterative deepening
— runs a depth-limited search repeatedly.

— In doing so, it increases the depth limit with each iteration until
reaching d, the maximum depth.

e bidirectional search

— runs two instances of BFS, one from the initial node, one from the
goal node.

— A solution is found when both instancs hit an identical node.

— Compared to pure BFS, the complexity of this algorithm can be
significantly lower, e.g. O(b%/?) rather than O(b?) with the branching

factor b.
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A*: terms

e involved terms:
— s: starting node
— T': the set of goal nodes

— ¢(x,y): cost from x to y

— g(x): cost from the starting node to the current node x

— h(x): a heuristic estimate of the distance to the goal

— f(x): distance-plus-cost heuristic to determine the order in which to

visit nodes in the tree
— N (x): set of neighbor nodes of x
— CLOSED: closed set
— OPEN: open set
— PATH(x): path to node x

Suendermann Knowledge-Based Systems
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A*: algorithm

g(s)=0; CLOSED={}; OPEN={s}; PATH(s)=(s);
compute h(s) and f(s)=g(s)+h(s)

»<OPEN={}? yes—» no solution

no

v

chose x from OPEN minimizing f(x);
OPEN\={x}; CLOSED+={x}

yes—» solution found

no

v
for each y in N(x):

if y not in CLOSED and y not in OPEN:

PATH(y)=(y)+PATH(x); OPEN+={y}; g(y)=g(x)+c(x,y); f(y)=g(y)*+h(y)
if (y in OPEN ory in CLOSED) and g(x)+c(x,y)<g(y):

PATH(y)=(y)+PATH(x); g(y)=g(x)+c(x.y); f(y)=g(y)+h(y)

if y in CLOSED:

OPEN+={y}; CLOSED\={y}

Suendermann
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A*: example

. i 1 2 3 4 5 6 7 8 9 10

h(z) |22 94 88 34 8 4 8 5 1 0

Suendermann
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A*: example (cont.)

step x N(x) PATH(x) OPEN CLOSED g(x) f(x)
init 1 {4,5,10} (1) {1} {} 0 22
pick min 1 {4,5,10} (1) {} {1} 0 22
iterate 4 {3} (4,1) {4} {1} 13 47
5 {7,10} (5,1) {4,5} {1} 65 153
10 {6,7,8} (10,1) {4,5,10} {1} 53 53
pick min 4 {3} (4,1) {5,10} {1,4} 13 47
iterate 3 {2,4,8,9} (3.,4,1) {3,5,10} {1,4} 25 113
pick min 10 {6,7,8} (10,1) {3,5} {1,4,10} 53 53
iterate 6 {5} (6,10,1) {3,5,6} {1,4,10} 70 74
7 {4,8} (7,10,1) {3,5,6,7} {1,4,10} 67 75
8 {6,9} (8,10,1) {3,5,6,7,8} {1,4,10} 76 81
pick min 6 {5} (6,10,1) {3,5,7,8} {1,4,6,10} 70 74
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Minimax search

e Originally formulated for two-player game theory.
e Each game situation is a state, i.e. a node in a graph.
e Assumption: The opponent always chooses the best-possible move.

e The minimax principle:
— One’s move maximizes one’s winning probability.

— The opponent’s move minimizes one’s winning probability.
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Minimax heuristic

e Can minimax be applied to chess?
e Not without further assumptions since the state space is too large.

e Possible solutions:
— limited search depth,
— heuristic cost/reward functions.

e Heuristic cost/reward functions do not reward 1/0 for winning/losing but
try to find a reasonable approximation.
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Minimax algorithm: example

® pic:
— source: http://en.wikipedia.org/wiki/Image:Minimax.svg
— author: Nuno Nogueira

— license: Creative Commons Attribution-Share Alike 2.5 Generic
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Outline

e logic and computer-assisted proof

e intelligent search and problem solving strategies

e expert systems and dialog systems

e Prolog
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Expert systems: introduction

e An expert system (XPS) is a computer program emulating the decision
making of human experts.

e XPSs are one of the most popular applications of artificial intelligence.

e In contrast to conventional software, an XPS is desighed to solve
complex problems by reasoning about knowledge.

e Accordingly, the two main components of an XPS are
— the inference engine
— the knowledge base

At runtime, an XPS has to communicate with a human user, so it also
requires

— human-machine interfaces for in- and output.

Suendermann Knowledge-Based Systems March 28, 2013
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Expert systems: architecture

e semantic
from HV machine H_V .
human interface y
inference AHV knowledge
engine base
human- .
to ) semantic
M eneration
human interface 9
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Mycin

e XPS designed to identify bacteria causing severe infections (e.g.
meningitis).

e Mycin also recommended medication (antibiotics) adjusted to the
patient’s characteristics.

e based on the PhD thesis of a student at Stanford University in the early
1970s

e The knowledge base consisted of about 600 rules established with the
help of medical experts.

e A performance test resulted in 69% good recommendations
outperforming infectious desease experts from Stanford’s medical school.

e Mycin was not released to the real world.

e One of the reasons is that of the reliability of medical decisions made
which is particularly crucial in the U.S.
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Deep Blue

e chess-playing computer by IBM

e On May 11, 1997, Deep Blue won a six-
game match against Garry Kasparov.

e based on brute-force computing power
(30 nodes with 480 VLSI chess chips)

e written in C under AIX

e The evaluation function contained mul-
tiple parameters tuned on 700,000
grandmaster games.

® pic:
— source: http://flickr.com/photos/22453761@N00/592436598/
— author: James the photographer

— license: Creative Commons Attribution 2.0 Generic
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Watson

e Watson is an Al computer system from IBM for question answering.

e It combines applications of
— machine learning,
— NLP,
— information retrieval,
— knowledge representation,
— reasoning.

e To showcase its abilities, in February 2011, Watson competed on the
show Jeopardy! against the human champions and won.

e During the quiz, Watson had no access to the Internet.

e It had access to 200M pages of structured and unstructured data
(including a copy of the entire Wikipedia), amounting to 4TB.

e Hardware consisted of

— 90 IBM Power 750 servers with 2880 processors and 16TB of RAM.
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Watson: architecture

Answer Evidence

sources sources

i Supportin Dee

E Primary Candidate PP 9 d P
S —— answer evidence = evi ence
generation retrieval scoring

Question Query Hypothesis > Soft > Hypothesis and »| synthesi > Fnal merging
analysis > decomposition > generation filtering evidence scoring ynthesis and ranking
Trained
Hypothesis > Soft 3 Hypothesis and models
generation filtering evidence scoring
Answer
. and
® pic: confidence

— source: http://en.wikipedia.org/wiki/File:DeepQA.svg
— author: Pgr94

— license: Creative Commons CCO0 1.0 Universal Public Domain Dedication
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Expert systems: knowledge base

e Traditionally, the knowledge base stores knowledge in a
computer-readable manner (e.g. using SQL, logical formulas).

e In the case of an XPS, the knowledge base can be composed of
heterogenious sources such as

— expert knowledge encoded by knowledge engineers (e.g. by
interviewing physicians, chess masters, or call center agents
etc.—depending on the XPS’s domain)

— structured data derived from encyclopedias, directories, cataloges,
Wordnet, etc.

— unstructured data (as provided by FAQs, scientific articles, Wikipedia,
or the WWW)

— probabilistical models (automatically) learned from structured and
unctructured data (e.g., statistics of survival rates given patients’
symptoms and medication, winning probabilities given a game
scenario, caller behavior and state etc.)
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Knowledge base: examples

e [/f something is living then it is mortal. (turn into 1st-order logic)

e /f somebody’s age is known then his birth date is today’s date minus his age.
(turn into SQL)

e /F the identity of the germ is not known with certainty AND the germ is
gram-positive AND the morphology of the organism is “rod” AND the germ is
aerobic THEN there is a strong probability (0.8) that the germ is of type
enterobacteriacae. (Mycin rule)
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Expert systems: inference engine

e The inference engine evaluates rules and/or statistics provided by the
knowledge base to produce a reasoning.
e It can be based on (a combination of)
— propositional logic (Oth-order XPS)
— other types of logic (predicate, modal, temporal, fuzzy)
— classification (e.g. decision trees)

— regression

e In general, an inference engine can run in two modes:
— batch (all input variables for a query are given at once)

— conversational (input variables are provided one after the other, this
way, non-salient variables can be skipped) (dialog systems)
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Spoken dialog systems: architecture

language

input HV speech H_V inder-

speech recognition ST
dialog AHV knowledge
BNDNOQ—. base

output AH speech AH language

speech synthesis generation
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Sample call

(play sample call)
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A call flow

an example call flow...

Balance or transfer?

balance transfer

From account?

checking savings checking savings

Provide Provide

checking savings
balance balance

savings
checking
transfer

checking
savings
transfer
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Manual vs. automatic design

e In commercial spoken dialog systems, call flows are built by call flow
designers.

e They implement a predefined business logic.

e It may appear obvious how to implement this logic, i.e.,
— which questions have to be asked,
— which backend requests have to be performed,

— in which sequence.

e However, there are strong arguments for automatic call flow generation:
— manual generation is time-consuming,
— manual generation is suboptimal and error-prone,

— automatic generation can react on dynamically changing business logic
or external factors such as the distribution of callers and call reasons.
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Call flow and business logic

an example call flow...

Balance or transfer?

balance transfer

From account?

checking savings checking savings

Provide Provide

checking savings
balance balance

savings
checking
transfer

checking
savings
transfer
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Call flow and business logic (cont.)

...and the underlying business logic table:

service type?|account type?|amount?|destination

balance checking give checking balance

balance savings give savings balance

transfer checking x$ check.-sav. transfer x$

transfer savings x$ sav.-check. transfer x$
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Call flow and business logic (cont.)

e Real-world call flows can be very complex (1000s of nodes and
transitions).

e Complex call flows can be broken down in sub-call flows each of which
can be represented by individual business logic tables.

e Without loss of generality, we consider a (sub-)call flow to be of a
question-answer-destination type.
—— Columns of the business logic table represent questions and routing
destination (or final call flow action).
—— Rows contain individual answers and destinations.
—— An additional column contains the probability with which every row
is visited.
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Call flow and business logic (cont.)

a general business logic table:

Q1 Q- Qv | D P
Al Al A, | Dt P!
A2 A2 A2 | D* P?
AN AN AN | DN PN

o (), is the mth question,
e A™ is an answer to Q,,
e D™ is the nth routing destination,

e P™ is the prior probability of a call ending at D™.
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Why does the order of questions matter?

e In an example, we want to determine which of these modem types a
caller has:

1 black Ambit
2 white Ambit
3 black Arris

e The system designer considers the two questions
A Is your modem black or white?

B Do you have an Ambit or an Arris modem?
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Why does the order of questions matter? (cont.)

e Since A=white — 2 and B=Arris — 3, the optimal order (A,B vs. B,A)
depends on the priors p(1),p(2), p(3) we can estimate from log data.

e Here, optimality means that the expected number of questions asked is
minimal.

e One way to estimate this number is to use the definition of the expected
value

E = M x;p(x;). (27)

e Our random variable x is the number of asked questions.

e In our example, x has two possible values (z; = 1 and =5 = 2; i.e,,
either we ask only one or both questions).
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Why does the order of questions matter? (cont.)

e In case of the order A,B, we ask one question with the probability p(2)
and two questions with 1 — p(2), i.e.,

E(A,B) =1-p(2) +2-(1—p(2)) =2—p(2). (28)
e Similarly, for the order B,A, we get
E(B,A)=1-p(3)+2-(1—p(3)) =2—p(3). (29)

e Depending on the specific values of p(2) and p(3) either E(A, B) or
E(B, A) is minimal, thereby determining the optimal order.

e As an example, assume

p(1) =0.3; p(2) =0.4; p(3)=0.3. (30)
e This results in

E(A,B)=1.6; E(B,A)=1.7. (31)

e Consequently, the optimal order in this example is A,B.
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On relevance and information gain

e A call flow resembles a decision tree.
—— We can use well-established machine learning techniques.

e To find the most relevant questions, i.e. the ones providing maximum
information, let’s use the information gain measure:

I(D; A,,) = H(A,,) + H(D) — H(A,,, D) . (32)
H is Shannon’s entropy defined as, e.g.
A
H(D) = — Y P(6)log, P(3) (33)
=1
where § € {1,..., A} are the distinct destinations in the currently

processed business logic table.

e At every node in the call flow, we determine which question leads to the
maximum information gain:

Q. with m = arg max I(D;A,,) . (34)

m=1,...,M
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Automatic call flow design: an experiment

e We took the business logic table from a mature call routing application
processing about 4M calls per month.

e Based on call logs of an entire month, the probabilities P™ were
estimated.

e Experiment parameters:

number of calls 3,868,014
number of questions M =4
number of rows N =31
number of distinct destinations | A = 20
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Automatic call flow design: an experiment (cont.)

e The original app asked M = 4 questions:
— service type (orders, billing, technical support, etc.)
— product (Internet, cable TV, telephone)
— actions (cancel, schedule, make a payment, etc.)

— modifiers (credit card, pay-per-view, digital TV conversion, etc.)

e Automatic call flow generation with maximum information gain strategy
resulted in M = 2.87.
— 30% reduction of average number of asked questions
— possible savings of five- to six-figure US$ per month
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A reward function

e The main argument for using commercial spoken dialog systems is to
replace the human agent to save costs.

e Can we quantify the savings?

e And if so, what can we do to optimize them?

Time is money: From S to R

e Principally, an application’s performance is determined by the fraction of
calls completed without agent intervention (the automation rate A).

e Consider an average cost W4 associated with a call successfully handled
by a human agent.

e On the other hand, automated calls produce costs (hosting, licensing or
telephony fees) that depend on the call duration T'.

e The per-time-unit cost is Wr.

e Consequently, the overall savings/reward is

S =WsA - WiT ﬁ%_ — R=TJsA-—-T Tw_ Awmv
with the trade-off param Ty = $
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Adaptation and optimization

T

e When automation rate falls below 7, savings turn negative (!)

e To avoid this situation, there are several techniques to adapt and
optimize spoken dialog systems.

e This is to continually increase performance over time (or keep it at a
high saturation point).

e This talk is about two components of a spoken dialog system subject to
adaptation and optimization:

— speech recognition and understanding

— dialog management
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Speech recognition and understanding

e The major criticism on spoken dialog systems is their tendency to
misunderstand human speech.

e Speech recognition and understanding problems cause

— escalations to a human upon reaching a max number of “speech
errors’,

— going down the wrong path leading to a dead end,

— poor user experience.
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Rule-based grammars

e Directed dialog: the prompt suggests what the caller should say
— Do you have more than one TV at home?

— What brand of modem do you have?

e Open prompt: callers are invited to use their own expressions

— Please tell me the reason you are calling about today.

e Commercial applications use rule-based grammars for directed dialog:
— data for statistical grammars initially unavailable
— lack of knowledge and tools to build statistical grammars

— practitioners and developers feel statistical grammars are out of their
control
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The curse of the unexpected

e Grammars are designed to match prompts
— Do you have more than one TV at home? (yes | yeah | yup | no | nope)

— What brand of modem do you have? (Motorola | Toshiba | Sony | ...)

e Unfortunately, a significant portion of users speak out-of-grammar
— Do you have more than one TV at home? [ have three TVs.

— What brand of modem do you have? Can't read the brand, it is blue.

IN GRAMMAR.
90% of calls NO-MATCH
RECOGNITION ERRORS
10% of calls

4

M% |
“ 000000 pN0oNOoO0Noooceenc oo o oo

I UNIQUE CALLER EXPRESSIONS
« 10% —» 90%

{

Rule based
grammars
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Grammar tuning

e Conventionally, commercial tuning is performed (sporadically!) by
— “speech scientists” looking at small samples of transcribed calls

— changing, adding, removing rules to match observed data

e Manual tuning is expensive and does not scale
— cannot take advantage of large amounts of data

— cannot systematically tune all grammars in large applications
(1000s of nodes)

e Manually tuned grammars cannot ever perform as well as statistical ones
(certain conditions apply)
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Building statistical language models and classifiers

TRANSCRIPTIONS

ANNOTATIONS

want to cancel the account

CANCEL_ACCOUNT

cancel service

CANCEL_ACCOUNT

| cant send a particular message to a certain group of people

CANNOT_SEND_RECEIVE_EMAIL

cancellation of the service

CANCEL_ACCOUNT

| need to setup my emalil

EMAIL_SETUP

they registered my modem in from my internet and | need to get my email address

EMAIL_SETUP

my emails are not been received at the address | sent it to

CANNOT_SEND_RECEIVE_EMAIL

g I Word string
Syntax Semantics
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Semantic annotation tool

SpeechCycle Speech Annotator 2.0

File Edit Tools Settings

- Highlight Symptoms _H_ m. Work Offline @ Update Data | Search _H_

Flug In

Help

=10l x|

11242009 12:16:32 PM: Successfully loaded 2 symptoms

11242009 12:16:32 PM: Successfully loaded 1 symptoms

11/24/2009 12;16:35 PM; Search result: Successfully loaded 100 Utterances u
-

Working Annotation Version: AnnotatedValue

customer service complaint

Elay
Update

Grammar Set: _ 4731 SIM CellRouter 1.2.3 Utterances Count: 100
= Phasel I_ Transcribed Text _ isAudioAvailable Annotated Value _ Confi... _ Recognized Text _ Recoy
Search replacement modem YES HSI_FEquipment_modem | 600 replace my modem HSI_E
Video internet prablems yes HSI_Problem_Vague @ 740 internet problems HSI_F
HSI retention Search_Service_Cancel 460 but agent
Phone representative operator 540 representative
operator representative operator representative opers
_TE_MOMATCH representative operator representative operz
=l-Phase2 speak to representative help operator speak to representative help operz
Search customer service operator customer service opers
= Video customer service operator customer service opers
F- Service make & payment Search_Account_Bill_MakePayment 440 make operator OpErs—»
- Frozen speak to a representative operator | 560 speak to a representative operz
no my telephone is out its been out for tw...  yes Phone_Other_Broken 430 no my telephone and file has b...  Phone
E1-Order i want my telephone fixed [r] yes Phone_Qther_Broken 650 i wan my telephane fixed Phane
- Change talk to someone about my phone service yes Phone_Other_Vague | 540 talk someone down my phone s...  Phone
- Equipment i wanna order new services yes Search_Service_Mew 660 phone services Phone
Problem my voicemail is not coming through red ligh...  ves Phone_VmailPrablem = 700 my voicemail is not coming thro... | Phone
- Eeryice ah balance yes Search_Account_Bill_Balance 620 uhn balance Searc
- Vague i want to know the location yES Search_Account_Bill_Center_Locator | 690 i want the location Searc
B} OnDemand payment yes Search_Account_Bill_MakePayment 700 payment Searc
— | pay my bil VEs Search_Account_Bill_MakePayment = 700 pay my bill Searc
-~ PINPassword [n] to make a pay yes Search_Account_Bill_MakePayment | 3560 make a payment Searc
- Other pay my bill yes Search_Account_Bill_MakePayment 660 pay my bill Searc
- Channel wanna make a payment yes Search_Account_Bill_MakePayment 370 wanna payment Searc
=l PayPerView make a payment YES Search_Account_Bill_MakePayment 620 make a payment Searc
. Problem pay bil YES Search_Account_Bill_MakePayment 470 pay bil Searc
Order payment yes Search_Account_Bill_MakePayment 540 payment Searc
- Vague pay my hill yES Search_Account_Bill_MakePayment = 4&0 pay my hill Searc
payment yes Search_Account_Bill_MakePayment 730 payment Searc
stameliay Vaque payment yes Search_Account_Bill_MakePayment | 720 payment Searc
- PINPasswordProblem make @ payment yes Search_Account_Bill_MakePayment | 500 a payment Searc
- ParentalControls bill pay yes Search_Account_Bill_MakePayment 470 bill pay Searc
- Serolingumbers payment VEs Search_Account_Bill_MakePayment 800 payment Searc
- Clodk arrannement vES Search Account Rill Paymentarran, .. | &30 arrannement Spar—
... MWD h_ d __. 5
—Status
11/24/2009 12:16:32 PM: Successfully loaded 3 symptoms h_ Conf ﬁ Annotated Value |Search_Complaint {~ Unique {* Multiple

Help - (Ctrl +F1) |

Suendermann

Knowledge-Based Systems

March 28, 2013

76



Infrastructure

Suendermann

application servers

VXML browsers,
ASR

full call recordings

application log
data warehouse

VXML/ASR log
data warehouse

utterance
files

transcription

call listeners

transcribers
mesh-up databases

annotation

CEl service suite

annotators
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Continuous improvement cycle

a complete set
of hand-written

grammars
Outperforms SSLU training
\ baseline? | and tésting _/
yes yes
v¥ AN
production Meets
system no requirements?
! no 5
utterance quality
collection assurance
transcription —J§ annotation
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C’ data conditioning process

e Completeness

— Transcribed/annotated data to match the distribution

e Correlation

— Correlation analysis guarantee that utterances are annotated
consistently across multiple annotators

e Consistency

— Similar utterances need to be annotated consistently.

e Confusion

— Reduce confusion across classifier categories
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C’ data conditioning process (cont.)

e Congruence

— Rule based grammars, if available, need to be congruent with
annotation

e Coverage

— minimize out-of-grammar utterance by adding new semantic
symptoms

e Corpus size

— minimum training, development, and test corpus sizes are required to
ensure statistical significance
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Continuous improvement of semantic accuracy

95

1T
90

85

80

75

70 _ _

9/9/2008 3/28/2009 10/14/2009
release date

5/2/2010  11/18/2010
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Continuous improvement of semantic accuracy (cont.)

incoming to other
call applications

F#utterances 2,184,203
#£calls 533,343
#nodes 2,021

:oc“uﬂ“wmmﬁhwwﬁ_:@ < > :owm_u__mmﬂﬂwﬂw_:@ True Total A.._CS. MOO&V N&O.xu
True Total (Sep. 2008) | 90.5%

h 4
cable TV
troubleshooting
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Escalator

e Equation 35 (R = T4 A — T') suggests that R can by increased by
decreasing call duration T'.

e This holds true for automated and non-automated calls.

e However, non-automated calls can be shortened aggressively by
escalating to an agent as early as possible.

e We call an algorithm that deliberately escalates calls based on its opinion
about the call outcome Escalator.
e Escalators can be based on

(1) manual rules (unsolicited agent requests, speech recognition
problems, situations the system does not know how to handle, etc.),

(2) the probability of the call ending unsuccessfully,

3) ..
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Escalator (cont.)

e Features used to estimate Escalator probabilities can be based on the
dialog history including

— transitions taken

— textual and acoustic speech input

— acoustic and semantic confidence scores

— number of no-match, no-input, or dis-confirmation

— etc.
e An example implementation is described in [Levin and Pieraccini, 2006].

e Another example is based on pruning the call flow:
— compute the average reward per node by exploiting log data,
— establish a ranking list

— compute the app’s overall reward incrementally eliminating nodes.
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Escalator Example

200
R[s]
195 |>
#calls (tokens) | 45,631
190 1 #nodes (types) 847
nodes pruned 176
185 # P
L Ta 5,000s
180 R w/o pruning | 183.5s
R w/ pruning 196.8s
175 ] AR 13.3s
ANO r-r—rrr 7 7 T+ 1 rrrr Tt T rr1Trrrr1Trrr1rrrr1t1rrrr 11T 11T 1T T T T T T T T T
1 21 41 61 81 101 121 141 161 181 201 221
#pruned nodes
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Contender

e Escalator focuses on reducing handling time.
e What can we do to boost automation rate?

e There can be 1000 things impacting automation, e.g.
— |Is directed dialog or open prompt better in this context?
— Or a y/n question followed by an open prompt with examples?
— How much time should | wait until | offer a backup menu?
— What is the ideal voice activity detection sensitivity?
— When do | time out?

— What is the best recovering strategy after a no-match?

e To find out which strategy is best, we can implement all of the above.

e Then we route certain portions of traffic to each of the Contender paths.
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Contender (cont.)

randomizer

Alternative 1

Alternative 2

randomization
weights

Alternative 3
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Contender: example

e As shown in [Suendermann et al., 2010], the amount of traffic hitting
path A should be the winning probability p(A).

e This approach maximizes the accumulated reward.

e In case of a 2-way split, p(A) can be estimated based on statistical tests
such as t or z tests (p value).

e In case of an n-way split, the numerical solution of an n-dimensional
integral over Contender probability distributions is required.

#calls (tokens) 38,004
Ta 5,000s

R baseline 253.4s

R after contending | 282.9s
AR 29.4s
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Outline

e logic and computer-assisted proof

e intelligent search and problem solving strategies

e expert systems and dialog systems

e Prolog
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Prolog

Prolog (programming in logic) is programming language associated with
artificial intelligence as well as computer linguistics.

In accordance with the architecture of XPSs, the main components of
logical programming are

1. a knowledge base (facts and rules),

2. an inference engine.

Advantage of logical programming is that one does not have to develop

an algorithm to solve the problem since this job is done by the inference
engine.

Instead, we describe the problem by means of logical formulas.

The open-source SWI-Prolog is available as part of the major Linux
distributions as well as Cygwin (http://cygwin.com) or can be obtained
from

http://www.swi-prolog.org
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Facts and rules

e Facts are atomic formulas with the Prolog syntax

NuAﬁHq oo o ﬁﬁv A@@V

featuring the predicate p and the terms t,...,¢,.

e All the variables in facts are universally bound, i.e., Eq. 36 represents the
logical formula

VZi,.eooyZm(P(t1y.-.5tn)). (37)
e Rules are conditional propositions with the Prolog syntax
A : |qu...qm3. Awwv

featuring the atomic formulas A, B4,..., B,.

e Again, all the variables in rules are universally bound, so, Eq. 38
represents the formula

<HH“...“HS@AmH>...>m3\|V>V. Aw©v

e This generally requires formulas to be given as Horn clauses.
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Some conventions

e The first character of variables is a capital letter or an underscore.
e The first character of predicates or functions is a lower-case letter.
e The predicate true represents validity.

e The symbols +, -, *, /, . are function symbols you can use in infix
notation.

e The symbols <, >, =, =<, >=, \=, ==, \== are predicate symbols you can
use in infix notation. Note that

== tests for equality,
\== tests for inequality, and

= is the unification operator.
e The symbol \+ (or, alternatively, not()) is the negation operator.
e The symbol 7, is used for comments.

e The symbols , and ; is used for conjunction and disjunction, respectively.
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On Prolog’s disjunction

e The following derivation shows that disjunctions in Prolog rules are
effectively no additional feature:

A:—By;...;B,. Biv...vB, — A.
-(B1V...VB,) VA
—-Bi{A...AN=B, VA
(—-B1VA)A...AN(—B, V A)

A : |.mH.

)

t ¢ ¢ 9

A:—B,,.

(40)
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An example

e Let us now consider a realistic example:
— All students are smart.
— Whoever is smart is powerful.
— Whoever is computer scientist and professor is powerful.
— Computer scientists are crazy.
— Alan is a student.
— Brad is a student.
— Colin is a computer scientist.

— Colin is a professor.
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An example (cont.)

e This is the respective Prolog code (see student.pl in the auxiliary
package kbs_*.zip):

smart (X) : -student (X) .
powerful (X) : —smart (X) .
powerful (X) :—cs(X) ,prof (X).
crazy (X) :—cs(X) .

student (alan) .

student (brad) .

cs(colin).

prof (colin).

00 N O 0B WN -
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An example (cont.)

e We want to find out whether

there is a powerful and crazy individual.

e The respective logical formula is

Jx(powerful () A crazy(x)). (41)

e In order to find out, we first launch Prolog with the command
pl
and get the command prompt
...Vl
e To load our knowledge base, we type
consult (student) .
e Now, we can use the Prolog syntax of Eq. 41 to check the validity of our
conjecture:

powerful (X) ,crazy(X).
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An example (cont.)

e We obtain the response
X = colin

telling us that Colin is a powerful and crazy individual.

e In order to identify other potential candidates, we type
resulting in the response

No

which indicates that there are no more solutions to the problem.
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Prolog’s inference algorithm

e We are given the Prolog program P consisting of a number of rules of

the form
R:=A:—-B,,...,B, (42)
and a query of the form
G=0Q1,...,Q,. (43)
e Here, facts are expanded to rules by
A+ A: —true. (44)

e The inference algorithm works as follows:

1. Search (in order of appearance) all the rules A in P, for which there
exists a unifier

= ] if Q1 H true (45)
mgu(Q., A) otherwise
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Prolog’s inference algorithm (cont.)

2. In case there are multiple such rules,

a) select the first rule (in order of appearance),
b) set a choice point (CP) to perform a different selection at this
point in case it becomes necessary at a later moment.
3. Here, two cases are distinguished:
a) m + n = 1: This means success, and Prolog returns the last
non-empty p.
b) Otherwise, we recursively continue with the query

G := Bip,y ..., Bpp, Qapty. .. s Qrp. Ahmv
If we do not find a solution, we return to the last choice point
reversing the replacements G :

G 1 accordingly.
e Negation is implemented in Prolog as negation as failure.
o le., if Q1 in 1 is of the syntax not(Q}) the algorithm tries to prove Q.

e If it succeeds, we know that (), is false, otherwise, we assume it is true.
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Prolog’s inference algorithm: proof

e Let us sketch a proof of Prolog’s inference rule.
e For the sake of simplicity, we limit ourselves to propositional logic and
assume a Prolog rule
A: —B. (47)
and a query
Q, R. (48)
e Prolog’s inference rule as used in the above algorithm is hence
A: —B.
A+ Q
B, R.
cLQ, R.
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Prolog’s inference algorithm: proof (cont.)

e Let us prove that this inference rule is a tautology:

V = (B> A)A(A+- Q) ABAR)— (QAR)
(-BVA)AN(RAVQIAN(AV-Q)ABAR - QAR

—(=BV A)V-(mAVQ)V-(AV-Q)V-BV-RVQAR
T

BA-AVAA-QV-AAQV-BV-RVQAR

S

\ 4
Ve

U
Akﬁ/\@v AN Al_@/\ Jkﬁv

(BVAVQ)AN(BYV-QV-A)A(—AV Q)
—AV-QV-BV-R
T

t ¢

0

< @ NH uw
t ¢ ¢ ¢

(49)
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Prolog’s inference algorithm: example

ID|CP|G R I
1 (1 |powerful(X),crazy(X) |powerful(X) : —smart(X)|[]
2 |1 |smart(X),crazy(X) smart(X) : —student(X) |[]
3 |3 |student(X),crazy(X) |student(alan) : —true [ X +— alan]
4 |3 |true,crazy(alan) |
5 |3 |crazy(alan) crazy(X) : —cs(X) [ X +— alan]
6 |3 |cs(alan) cs(colin) : —true Q
7 |1 |student(X),crazy(X) |student(brad) : —true X +— brad]
8 |3 |true,crazy(brad) |
9 (1 |crazy(brad) crazy(X) : —cs(X) (X +— brad]
10|1 |cs(brad) cs(colin) : —true Q
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Prolog’s inference algorithm: example (cont.)

ID|CP|G R L

11 powerful (X), crazy(X) powerful (X) : —cs(X), prof(X)|[]

12 cs(X), prof(X), crazy(X) cs(colin) : —true [ X +— colin]
13 true, prof(colin), crazy(colin)

14 prof(colin), crazy(colin) prof(colin) : —true

15 true, crazy(colin)

16 crazy(colin) crazy(X) : —cs(X) [ X +—> colin)]
17 cs(colin) cs(colin) : —true |

18 true |

Prolog’s response is hence: [ X +— colin].
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Drawbacks of Prolog’s inference algorithm

e Consider the Prolog program:
1 a:-not(true).

e Let us query whether a:

D|cP |G | R "
1 a a : —not(true) | []
2 true []

e The query infers false by negation as failure (indicated by * which means
that a result derived from this step needs to be inverted).

e This, however, does not coincide with our understanding of the semantics
of the implication: L. — a is true independent of whether a or not.

e The reason is Prolog’s closed-world assumption: It assumed the database

is complete; l.e., if the answer cannot be deduced, it is false.

e Even worse, the response to the query not(a) is true due to two
applications of inversion.
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Drawbacks of Prolog’s inference algorithm (cont.)

e Consider the Prolog program:

1 a:-b.
2 b:-a.

e Let us query whether a, b:

ID

CP

G

=y
T

& W0

a, b
b, b
a, b
b, b

o Q
|
)

)
|
o

o
|
)

e The program enters an infinite loop even though the query could be

proven true in a few steps:

(b >a)A(a—b) —>aAbs T. (50)

e The nature of Prolog being based on Horn logic and its negation and

loop handling show a considerable weakness of its inference algorithm.
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Lists

e Apart from Prolog’s inference engine, a predominant feature is its list
handling.

e Lists can be written in three ways:

1. .(s,t) defines a list with the element s and the tail ¢;

2. [s|t] does the same;

3. [s1,...,85] defines a list with the elements s;,..., s,

e Accordingly, these are equivalent lists:

(1,.(2,.(3,])))
[2{{2[[3]11]]]

[1, 2, 3]

(51)
(52)
(53)
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Lists: example function

e We want to desigh a function cat that concatenates two lists L1 and L2
resulting in the list L2.

e In the world of logical programming, this could be conceived as the 3-ary
function cat(L1,L2,L3) which becomes true iff L3 is the concatenation of
L2 and L2.

e A respective Prolog program is:

1 cat([X|L1],L2, [X|L3]):-cat(L1,L2,L3).
2 cat([],L,L).
e This program reads
An empty list concatenated with a list L results in the same list L
(Fact 2). Furthermore, if the concatenation of the lists L; and L,
results in L3, then L, with an preceding element X concatenated

with L, must result in Lz with the same preceding element X
(Rule 1).

e In the following, we run an example to understand the program'’s
functionality.
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Lists: example function (cont.)

ID|cP|G R "
1| |cat((t, 2], [3,4], V) |cat (X |La], L, [X|La]) : —  |[X o [1], L1 o [2],
Om..nAN\HuN\wu N.\wv Lo — _”wum_"”_uM\ —> T._N.\m”_”_
2 | |cat([2], [3,4], L) |cat([X'|L4], L [X|L4]) : — |[X7 o [2], L o [
Om.dAN\Hu \wu Mo.v N\N — ﬁwuﬁuhw — ﬁw_hmﬁ
3 cat([], [3,4], L3) |cat([X"|LY], Lz, [X"|L5]) : — |
Om..nA \H\u \m\gbn\w\v
4 cat([],[3,4], L3) |cat([],L,L): — [L — [3,4], L3 — [3,4]]

Prolog’s response is hence:

Y — ””_. .N.\..w”_
= [1][2|L3]]
= [1][2][3, 4]]]
— [1,2,3,4] (54)
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Lists: example function (cont.)

e You may perceive some flavor of Prolog’s elegance if you consider which
use cases the above example function features:

— Concatenate two lists:
cat([1,2],[3,4],Y). (55)

— Check whether a list resulted from another list by way of
concatenation:

cat([1,2], Y, [1, 2,3, 4]). (56)
— Find all possible splits of a list into two lists:
cat(X,Y, [1, 2, 3,4]). (57)
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How order matters

e Consider the following program:

1 a.
2 a:-b.
3 b:-a.
e We get the query result
a. — Yes. (58)
e Now, we reorder the rules:
1 a:-b.
2 a.
3 b:-a.
e This, time, the query result is
a. — ERROR: Out of local stack. (59)

e The inference algorithm keeps accessing Rule 1 over and over again.

e Other than the example on Page 105, this time, we do not get an infinite
loop but a stack overflow.

e This is because Prolog has to create a choice point for every recursion
due to the presence of the alternative Rule 3.
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How order matters (cont.)

e Consider the following program:

1 s([Xx]1,[X1).
2 s([A,B],[A,D]):-s([B],[D]),A<D.

e We get the query result
s([1,2],X). — X=1]1,2]. (60)

e Now, we switch the elements in Rule 2’s body:

1 s([X], [XD).
2 s([A,B],[A,D]):-A<D,s([B], [D]).

e This time, we get

s([1,2],X). — ERROR : Arguments are not sufficiently instantiated.

e The inference algorithm tries to evaluate A < D first, before D had been
determined by way of evaluating s([B], [D]).
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Symbolic vs. numerical computation

e Consider the following program:

1 p(X,Y):-Y==X+1.
2 q(X,Y):-Y>X+0.9999999,Y<X+1.0000001.
3 rX,Y):-Y is X+1.

4 s(X,Y):-Y=X+1.

e We get the following query results:

p(1,2). — No.

q(1,2). — Yes.

r(1,2). — Yes.

s(1,2). — No.

p(1,Y). — No.

q(1,Y). — ERROR: Arguments are not sufficiently instantiated.
r(1,Y). — Y=2.

s(1,Y). — Y=1+1.
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Symbolic vs. numerical computation (cont.)

e The check for equality (==) fails due to issues with Prolog’s numerical
precision.

e Rather than for equality, q checks for a small range around the expected
value and thereby succeeds. When queried with the free parameter Y,
however, Prolog is not able to limit the (real-valued) search space and
complains about insufficient instantiation.

e Prolog’s keyword is assigns the exact value of X 4+ 1 to Y and therefore

succeeds. Accordingly, the free parameter Y gets assigned the sum of 1
and 1.

e The unification operator = tries to solve the syntactical equation
2 = 1 + 1 which is not possible since different function symbols cannot
be unified. Hence, it fails. When queried with a free parameter, however,
the syntactical equation is Y = 1 + 1 whose solution is the result set.
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Prolog: exercises

e Write programs to
1) determine the maximum of two numbers (2 lines)
2) calculate the factorial (2 lines)
3) uniq a list (3 lines)
4) find identical elements in two lists (3 lines)

5) sort a list (4 lines)
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Notes for the Prolog programming project

e Deadlines:
group | introduction | proposal due | code due

presentation

AlA March 26 March 31 April 18
AlIB March 22 March 27 April 14
AlIC March 22 March 27 April 14
AID March 27 April 1 April 19

April 23 (?)
April 19
April 25 (?7)
April 24

e Proposals have to be submitted to all of the following e-mail addresses:

david@suendermann. com
suender@icsi.berkeley.edu

suendermann@dhbw-stuttgart.de

e The subject line of the e-mail has to contain

a) the word “proposal”,
b) your first and last name(s),

c) your matriculation number(s), and

d) your group ID(s) including the year (e.g. AIA10).
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Notes for the Prolog programming project (cont.)

Up to two students can collaborate on each project.

Proposals have to contain a brief (no more than 200 words) but clear
description of what your program is supposed to achieve and how typical
rules and queries are expected to look like.

The Prolog code of your project needs to be well-documented according
to common coding standards. For a Prolog coding style reference, see:

http://www.ai.uga.edu/mc/plcoding.pdf
Make sure the code clearly shows example queries to run the code.
There is no need for any documentation outside of the code itself.

Submit your program to the above listed e-mail addresses with the above
described subject line, replacing “proposal” by “code”.

Do not dare to copy anybody else’s code. Every identified attempt will
cause failure of the project.

So does missing a deadline without prior permission or medical certificate.

Suendermann Knowledge-Based Systems March 28, 2013 116



Notes for the Prolog programming project (cont.)

e Presentations will be held in the class room during the time of the
regular lecture. An exact schedule will be compiled shortly before.

e Presentations are 15 minutes in duration. During this time, you need to
convince me to respond positively to the questions in the table below.

e To derive the coding project’s final score, | will consider answers to the
following questions:

Does the proposal address a sufficiently challenging KBS task? | 20%
Does the program fulfill the proposed task? 40%
Was the code well documented? 20%
Was the project well presented? 20%

e In doing so, | will generally apply a weighting scheme according to the
percentages of the table (exceptions are possible, e.g., if somebody
proposes a very challenging task and does not submit anything useful,
there is no right to claim the 20% associated with difficulty, either).
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Examples of Previous Prolog programming projects

e Four in a Row

e Freecell

e Davis and Putnam algorithm for propositional logic
e Hidden-Markov Models for Emotion Recognition
e Huffman Code

e Levenshtein Distance

e Lisp

e Minesweeper

e Pacman

e Peg Solitaire

e Rubik’s Cube

e Towers of Hanoi

e Zork
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