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Abstract We examine the efficacy of text and speech-based features for language
identification in code-switched human-human dialog interactions at the turn level.
We extract a variety of character- and word-based text features and pass them into
multiple learners, including conditional random fields, logistic regressors and deep
neural networks. We observe that our best-performing text system significantly out-
performs a majority vote baseline. We further leverage the popular i-Vector ap-
proach in extracting features from the speech signal and show that this outperforms
a traditional spectral feature-based front-end as well as the majority vote baseline.

1 Introduction

Code-switching refers to multilingual speakers’ alternating use of two or more lan-
guages or language varieties within the context of a single conversation or discourse
in a manner consistent with the syntax and phonology of each variety [1, 2, 3, 4].
Increasing globalization and the continued rise of multilingual societies around
the world makes research and development of automated tools for the processing
of code-switched speech a very relevant and interesting problem for the scientific
community since it has applications in multiple domains, including consumer/home
electronics and business applications. In our case, an important additional motivat-
ing factor for studying and developing tools to elicit and process code-switched or
crutched! language comes from the education domain, specifically language learn-
ing. Recent findings in the literature suggest that strategic use of code-switching
of bilinguals L1 and L2 in instruction serves multiple pedagogic functions across
lexical, cultural and cross-linguistic dimensions, and could enhance students’ bilin-
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! Crutching refers to language learners relying on one language to fill in gaps in vocabulary or
knowledge in the other [5].
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gual development and maximize their learning efficacy [6, 7]. This seems to be a
particularly effective strategy especially when instructing language learners with
low proficiency [8]. Therefore, the understanding of code-switched dialog and de-
velopment of computational tools for automatically processing such code-switched
conversations would provide an important pedagogic aid for teachers and learners in
classrooms, and potentially even enhance learning at scale and personalized learn-
ing.

Automated processing of code-switched speech and dialog poses an interesting,
albeit challenging problem for the scientific community. This is because the hurdles
observed during traditional dialog processing tasks such as automatic speech recog-
nition (ASR), spoken language understanding (SLU), natural language generation
(NLG) and dialog management (DM) are exacerbated in the case of code-switched
speech where the language the speaker is using at any given instant is not known
apriori. Integrating an explicit language identification (or LID) step into the ASR
module can alleviate these issues and improve user experience greatly. Take for
example a use case of designing conversational applications for non-native English
language learners (ELLs) from multiple native language (or L1) backgrounds. Many
such learners tend to “crutch” on their L1 while speaking in the target language (or
L2) that they are learning, especially if they are low proficiency learners [9], re-
sulting in mixed-language speech. In such a case, LID becomes important not only
for ASR, but also for DM, where the dialog designer/language expert may want the
conversational agent to perform different dialog actions depending on whether the
speaker used his/her L1 alone, the L2 alone, or a mixture of both during the previous
turn.

Researchers have made significant progress in the automated processing of code-
switched text in recent years [10, 11, 12]. Particularly relevant to our work is prior
art on predicting code-switch points [13] and language identification [14, 15]. Re-
searchers have made much progress on LID in code-switched text (tweets, in par-
ticular) thanks to recent workshops dedicated to the topic [12]. One of the top-
performing systems used character n-gram, prefix and suffix features, letter case
and special character features and explored logistic regression and conditional ran-
dom field (CRF) learners to achieve the best performance for Spanish-English
codeswitched text [16]. Yet another successful system leveraged bi-directional long
short term memory networks (BLSTMs) and CRFs (along with word and character
embedding features) on both Spanish-English and Standard Arabic-Egyptian lan-
guage pairs [17].

While there is comparatively less work in the literature on automated analysis
of code-switched speech and dialog, the number of corpora and studies is steadily
growing in several language pairs — for instance, Mandarin—English [18, 19],
Cantonese—English [20] and Hindi-English [21]. As far as dialog is concerned,
the Bangor Corpus consists of human-human dialog conversations in Spanish—
English, Welsh—English and Spanish—Welsh [22]. More recently, Ramanarayanan
and Suendermann-Oeft (2017) also proposed a multimodal dialog corpus of human-
machine Hindi—English and Spanish—English code-switched data [23]. To our knowl-
edge, there is limited research on LID in code-switched speech and dialog — while
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certain works do use an LID system [24, 25] to improve the performance of code-
mixed ASR, the LID component is baked into and uses the ASR setup. While this
is perhaps the optimal way to proceed if one is only concerned with one or two
language pairs, as we scale up code-switched dialog systems to multiple language
pairs, building ASRs for each of the languages involved becomes difficult, espe-
cially keeping in mind SLU and DM. Hence, this paper explores an ASR-free ap-
proach to turn-level LID in code-switched dialog, exploring the efficacy of both
text-based and speech-based features on a single corpus of code-switched data. To
our knowledge, this is the first such exploration of both text and speech features for
turn-level LID in human-human dialog data.

The rest of this paper is organized as follows: Section 2 describes the Bangor
Miami corpus used for our turn-level LID experiments. We then elucidate the vari-
ous text and speech features used in our experiments in Section 3, followed by the
experimental setup in Section 4. Section 5 presents the results of our LID experi-
ments as well as analyses on the different factors affecting classification accuracy.
Finally, we conclude with a discussion of current observations and an outlook for
future work in Section 6.

2 Data

Table 1: Corpus statistics.

Item [Bangor Miami
Number of turns collected 35428
Utterance-level language | English: 65%
use or codeswitching Spanish: 29%
percentage Both: 6%

We used the Bangor Miami corpus® of code-switched human—human dialog in
English and Spanish for our turn-level LID experiments. The corpus consists of
56 audio recordings and their corresponding transcripts of informal conversations
between two or more speakers, involving a total of 84 speakers living in Miami,
Florida (USA). In total, the corpus consists of 242,475 words of text from 35 hours
of recorded conversation. 63% of the transcribed words are English, 34% Span-
ish, and 3% are undetermined. The manual transcripts include beginning and end
times of utterances and per word language identification. For our experiments, we
excluded turns containing tokens with ambiguous or undetermined language.

The audio was split into turns as specified by the provided timestamps. Each turn
was downsampled to 8 kHz and converted to a single channel. The transcriptions
were processed by performing whitespace tokenization on each turn, and removing
event descriptions (such as ”&=laugh”) and unintelligible tokens.

2http://bangortalk.org.uk/
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3 Feature Extraction

We performed turn-level LID experiments using speech-only features as well as text
features (which serve as a benchmark since they directly contain linguistic informa-
tion), and compared them to a majority vote (or chance) baseline. In this section,
we will first describe the various text and speech features explored, followed by the
machine learning setup in the subsequent section.

3.1 Text Features

Following earlier work [16, 17], we experimented with the following low-level bi-
nary text features that capture the presence or absence of the following:

e Word n-grams: We used a bag-of-words representation, trying uni- and bi-
grams.

e Character n-grams: The set of unique character n-grams (1 < n < 4), with-
out crossing word-boundaries. For example, the word sequence “la sal” would
produce the following character n-grams {1, ‘a’, ‘s, ‘al’, ‘la’, ‘sa’, ‘sal’}.

e Character Prefixes/Suffixes: All affixes with length < 3. For example, the word
“intricate” would have prefixes {‘1’, ‘in’, ‘int’}, and suffixes { ‘ate’, ‘te’, and ‘e’ }.

Additionally, for one experiment (LSTM), we used randomly initialized word em-
beddings as input features, which were trained as part of the network.

3.2 Speech Features

We explored two featuresets for our speech experiments — OpenSMILE features and
i-Vector features. We used the OpenSMILE toolkit [26] to extract features from the
audio signal - specifically, the standard emobase2010 feature set containing 1582
features that is tuned for recognition of paralinguistic information in speech. These
consist of multiple low-level descriptors - intensity, loudness, MFCCs, pitch, voic-
ing probability, FO envelope, Line Spectral Frequencies (LSFs) and zero crossing
rate, among others - as well as their functionals (such as standard moments).

We also trained a GMM-based i-Vector system (see [27]) using the Kaldi toolkit
[28]. Initially introduced for speaker recognition [29], i-Vectors have also been
shown to be particularly useful features for language recognition (see for example
[30]). The i-Vector extraction procedure can be viewed as a probabilistic compres-
sion process that maps input speech features into a reduced dimensionality space
using a linear Gaussian model — for more details, see [29]. The front-end for the
extracts were 20-dimensional MFCCs including CO, using a 20ms Hamming win-
dow with 10ms time shift along with their first and second derivatives. We deleted
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non-speech segments within utterances through an energy-based voice active de-
tection (VAD) method, and performed utterance-based cepstral mean normalization
on the acoustic feature vectors. We trained a GMM and a full covariance matrix as
the Universal Background Model (UBM) by using the entire Fisher English [31]
and Spanish corpora, in addition to the Bangor corpus data (we did not include
code-switched turns). We then used the Bangor Corpus to train an i-Vector extractor
T-matrix. The number of Gaussian components and the i-Vector dimensions were
set to 1024 and 800, respectively.

4 Experiments

We randomly partitioned the Bangor corpus data into train and test sets using an
80%-20% split. For experiments with text-based featuresets, we first extracted the
word and character level features described in Section 3. We then tried two ap-
proaches to predicting one of 3 classes — English, Spanish or Code-switched — at
the turn-level: (i) Use a CRF to make word-level predictions, and aggregate them to
form a turn-level prediction, and (ii) aggregate the features at the turn level and try a
variety of learners, including logistic regression and deep neural networks to make
language predictions at the turn level. Additionally, we tried passing sequences of
word-embeddings (randomly initialized and trained on the train partition of the Ban-
gor corpus) to an LSTM and making an LID prediction for each turn. We experi-
mented with different learner configurations and parameter settings and summarize
the best performing featureset and learner combination in the Results section.
We set up the speech experiments using the following steps:

1. Partition the full audio files into train and test sets. We hold out any code-
switched turns from the training partition at this step in order to train a two-class
UBM model for i-Vector extraction.

2. Segment each turn into a sequence of two-second segments, and extract an 800-
dimensional i-Vector for each. For this step, 80% of the code-switched i-Vectors
are randomly moved back to the training partition while the remaining 20% were
moved to the test partition. (Note that during this process we ensure that we use
the same train-test partitions as we are using for the text-based systems to enable
a fair comparison of systems).

3. For each turn, we generate a three-dimensional vector consisting of a) the Eu-
clidean distance of the segments from the average English segment, b) the dis-
tance from the average Spanish segment, and c) the length of the turn in seconds.
We also experimented with using Cosine distance, as well as each segment’s
PLDA score for the respective classes, instead of the Euclidean distance.
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. Optionally, use SMOTE oversampling [32] to overcome class imbalance, ensur-

ing that there Spanish and English classes have the same size (code-switched
turns were not oversampled?).

order to predict the turn-level language of each turn in the test set.

5 Observations and Analysis

. Fit an appropriate learner (such as a Linear Discriminant Analysis classifier) in

System Featureset Machine F1 per class |Weighted
Learner Eng| Spa| CS | Ave. F1
Word, Character n-grams (1-4),|CRF, aggregated for|[0.98|0.95|/0.91| 0.97
Character affixes (1-3) for cur-|turn-level predictions
rent, previous, and next word
Text (Word embeddings ~ ~ ~ | LSTM ~ ~ 7 7 7] 0.98]0.95/09 [ 096 -
|Word n-grams (1-2), Character n-|Logistic Regression ~ [0.97(0.93|0.67 0.94 ~
grams (1-4), Character affixes (1-
3), turn-length in tokens
Euclidean distance of segments|Linear Discriminant|0.68(0.71{0.19| 0.67
from mean English and mean|Analysis classifier (with
Spanish i-Vectors, length of turn|SMOTE oversampling)
Speech in seconds
|OpenSMILE features ~ | Linear ~ ~ Discriminant[0.75|0.20|0.16] 055 ~
Analysis classifier
Sequence of i-Vectors ~ | LST™M* ~ = 7 7 7] 0.77/0.36/0.15[ 0.61 ~
Majority Baseline|N/A N/A 0.79/0.0({0.0| 0.51
Random Baseline [N/A N/A 0.44{0.3210.09| 0.39

Table 2: Performance of Speech and Text systems (Eng:English, Spa:Spanish, CS: Code-switched).
The weighted average F1 score of the best-performing text and speech systems are in bold.

English|Codeswitched |Spanish
English 4513 8 18
Codeswitched| 20 352 37
Spanish 122 7 1936

Table 3: Confusion Matrix for best-performing text system

3 We did experiment with oversampling the code-switched class as well, but this resulted in a
degradation in performance. This could probably be due to the relatively few samples in the code-
switched class to begin with.
4 We used an LSTM implementation with 200 units and a zanh activation function. We optimized
on a categorical cross-entropy loss function using the Adam optimizer.
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English|Codeswitched |Spanish
English 3259 504 776
Codeswitched| 217 97 95
Spanish 1585 1 2953

Table 4: Confusion matrix for best-performing speech system

[Segment or Turn[SMOTE?|N (train)|N (test)[English|Spanish| CS [Avg (weighted)

Segment No 29,583 | 7,073 | 0.85 0.55 |N/A 0.76

Monolinguat] — — o _ _ Yes_| 39488 |10016| 072 | 081 |NA| 077
Turn No 26,708 | 6,604 | 0.85 0.50 [N/A 0.74
Yes 36,062 | 9,078 | 0.75 0.71 [N/A 0.73
3-Class Turn No 28,415 | 7,013 | 0.77 0.50 (0.21 0.66
Yes 37,769 | 9,487 | 0.68 0.71 (0.19 0.67

Table 5: Speech system varieties

Table 2 lists the best performing text and speech systems, including the feature
sets and model details. We observe that the best text system significantly outper-
forms the majority vote baseline by a huge margin, with an overall weighted average
F1 score of 0.97 and an F1 score of 0.91 for the code-switched category. We also
observe that character- and word-level features combined with a conditional random
field (CREF) classifier perform slightly better than word embedding features fed into
a long-short term memory neural network (LSTM).

On the other hand, LID performance dips for speech-based systems relative to
their text-based counterparts for the systems we investigated, with the best perform-
ing speech system (using i-Vectors and turn length) yielding an overall weighted
average F1 score of 0.67. In this case, the F1 score for the code-switched class is
pretty low — 0.19. A closer examination of the confusion matrices for the best per-
forming text and speech systems (Tables 3 and 4 respectively) provides more insight
into the performance gap between the two — the text systems have a lot less confus-
ability between classes, especially for the code-switched class. While this is not
entirely surprising given that we are not directly incorporating linguistic informa-
tion into our speech feature front-ends, and the large amount of far-field noise and
background chatter in the speech data, this result is still in much need of improve-
ment. Having said that, all speech systems still perform well over the majority vote
baseline F1 score of 0.51.

In order to investigate to what extent the smaller sample size of the code-switched
category is responsible for bringing down the LID performance of the speech-based
systems, we looked at the performance of our speech systems on a 2-class (English—
Spanish) classification problem at both the segment and the turn level by removing
all code-switched turns from our training and test data. For the 2-class segment clas-
sification, we experimented with using the segment i-Vectors, using the Euclidean
and Cosine distance between each segment and the mean vector for each class, as
well as the segment-level PLDA scores for English and Spanish as features, with
a the same set of learners tested on other experiments, and report the weighted av-
erage F1 for the best performing system among these. We further examined the
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effect of class imbalance in the Bangor corpus — recall that the corpus contains 64%
English turns, 30% Spanish turns, and 6% code-switched turns — on system perfor-
mance. Table 5 lists the results of these experiments. We observe that in general, the
English—Spanish “monolingual” classifiers do much better in terms of class-specific
F1 scores than the ”3-class” classifiers. Using the synthetic minority oversampling
technique (SMOTE) to overcome class imbalance also helped boost performance,
suggesting that class imbalance and the small amounts of code-switched data con-
tributed to a performance drop. Finally, we also hypothesize that audio quality issues
in the noisy Bangor corpus speech data might have contributed to the lower num-
bers of the speech system. Systematically investigating this hypothesis is a subject
for future research”.

6 Discussion and Outlook

We have presented an experimental evaluation of different text and speech-based
featuresets in performing language identification at the turn level in human-human
dialog interactions. While the best text-based system performed excellently and at
par with the state of the art in the field, the best speech-based i-Vector system did
not perform as well, but still significantly outperformed the majority vote chance
baseline. We observed that one of the reasons for the relatively poor performance of
the speech-based system could be the relatively noisy audio that contains significant
amounts of far-field and background noise. This, along with the greater percentage
of English than Spanish or code-switched turns in the database, might have con-
tributed to the performance drop. However, note that as in the case of the text-based
systems, we are not directly using any linguistic or syntactic information for the
speech-based systems, which undoubtedly impacts the efficacy of the latter, since
such information is extremely useful for the task of language identification.

That having been said, we will explore a number of potential avenues for im-
proving the performance of the speech-based LID systems. Chief among these, as
mentioned earlier, will be to investigate techniques for noise-robustness in order
to improve the LID performance of speech systems and bring them at par with
their text counterparts. In addition, we would like to explore the performance of
more feature—learner systems, including a more comprehensive study of deep neu-
ral network-based learners. Finally, it will be important to see how such LID systems
perform on different code-switched datasets, both within and across language pairs,
in order to truly test the robustness of systems across languages and dataset bias.

3 In order to roughly test this hypothesis, we ran experiments wherein we used the relatively cleaner
Fisher corpora (of both Spanish and English speech) for both training and testing. In this case, the
F1 score obtained was 0.96, highlighting both the mismatch between the Fisher and Bangor corpora
as well as the effect of noise in the Bangor corpus. Of course, there is the possibility that the 2-class
classification of English and Spanish turns from monolingual turns in code-switched speech might
pose more challenges than LID in non-code-switched speech. Nevertheless, while this test was not
a systematic one (and hence reported only as a footnote), this clearly points toward the effect of
dataset quality on system performance.
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Going forward, understanding and processing code-switched speech has many
implications for building code-switching dialog systems. For instance, integrating
an explicit language identification step into the automatic speech recognition (ASR)
module could help enhance the recognition performance. However, such solutions
still require one to develop an ASR for each of the languages being analyzed. This
starts becoming increasingly impractical if one wants to scale applications to multi-
ple language pairs — an example use case is in the case of designing dialog solutions
for non-native English language learners (ELLs) from multiple native language (or
L1) backgrounds. In such cases, research into end-to-end spoken language under-
standing or SLU (where we directly go from the speech input to the SLU hypothe-
sis) becomes very useful; and language identification would be a key component of
such modules. Over and above SLU applications, such an LID module might also
help inform pragmatic considerations during dialog management and the language
generation module for the generation of appropriate mixed-language output. We
therefore believe that in many ways this study has just scratched the surface of in-
teresting and relevant research directions in the automated processing and modeling
of code-switched dialog.
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