
Towards a Distributed Open-Source Spoken Dialog System
Following Industry Standards
Tim von Oldenburg1,2,4,7, Jonathan Grupp1,2,5, David Suendermann1,3,6,8

1DHBW, Stuttgart, Germany 2IBM, Böblingen, Germany 3SpeechCycle, New York, USA
Email: 4tim@voldenburg.com, 5jonathan.grupp@gmail.com, 6david@suendermann.com
Web: 7www.tvooo.de, 8www.suendermann.com

Abstract
This paper outlines an architecture of a distributed spo-
ken dialog system based exclusively on open-source com-
ponents. These components comprise telephony, speech
recognition, voice browser, and speech synthesis, all of
which are to incorporate industrial standards as recom-
mended by the W3C. Our work demonstrates that real-
world spoken dialog systems can be built without use of
proprietary components.

1 Introduction
Spoken dialog systems have been subject to academic re-
search for quite some time. Beginning in 1990, substantial
progress in the domains of spoken language understand-
ing and dialog management has been made in the scope
of the DARPA projects ATIS [1] and Communicator [2].
The evaluated systems focused on a specific domain of
interest (flight scheduling), and, even though this domain
sounds suitable for commercial use, the projects resulted
in no considerable live deployments. One of the reasons
was the high sophistication of the underlying models of
speech recognition, understanding, generation, and synthe-
sis as well as dialog management which made design and
maintenance of these systems very difficult.

On the other hand, at the beginning of this century, a
number of industrial players (AT&T, Sun, SpeechWorks,
Nuance, among others) started to code spoken dialog sys-
tems adhering to fairly simple design paradigms (such as
strongly limited vocabulary, predominantly yes/no ques-
tions, speech menus with only a few alternatives, rule-
based dialog managers, prerecorded prompts, flat seman-
tic structure) [3]. Even though these systems were not as
“intelligent” and sophisticated as their academic counter-
parts, they had two main advantages: They were easy to
build and worked surprisingly well. Even more so, when
multiple industrial players sat together and agreed on com-
mon standards for speech grammars [4], semantic interpre-
tation [5], language models [6], and dialog management by
way of voice browsers [7].

While industry agreed on standards to produce compo-
nents (theoretically) exchangeable among each other, the
components themselves remained proprietary to each ven-
dor. License fees for commercial software such as speech
recognizers or voice browsers can be considerable, espe-
cially when multiple telephony ports are concerned. The
goal of our current work is to build a multi-port spoken di-
alog system infrastructure adhering to the above mentioned
industrial standards based exclusively on open-source soft-
ware components. In doing so, we incorporate (where pos-
sible) available open-source software from diverse origins
as described in the following sections.

Text-to-Speech

#1

Telephony

#2

Automated 
Speech 

Recognition

#3

Voice Browser

#4

Figure 1: High-level architecture of a spoken dialog sys-
tem

2 General Architecture
The spoken dialog system described in the following con-
sists of four main components (see Figure 1) communicat-
ing with each other over the software stack illustrated in
Figure 2:
1. a telephony server to handle calls,
2. a speech recognizer (ASR),
3. a voice browser, and
4. a text–to–speech synthesizer (TTS).

Even though some (or all) of these components may reside
on a single server, in industrial settings, they are commonly
distributed among several network nodes. This makes es-
pecially sense when more calls should be handled than a
single server node can process. Sometimes, components
are even distributed among facilities thousands of miles
apart or hosted in a cloud computing environment. In order
for our architecture to be able to work in the same fashion,
we installed components on different network nodes in a
virtualized environment.



3 Implementation
3.1 Software Stack
We use the Linux operating system on all servers which
is open-source according to the GNU General Public Li-
cense (GPL) and other licenses. Ubuntu Server is one of
the most popular Linux distributions and is commercially
supported by Canonical making it an excellent choice for
professional environments. Ubuntu comes with the Ad-
vanced Linux Sound Architecture (ALSA) to process au-
dio. In our scenario of virtual machines where no physical
sound hardware exists, ALSA uses a dummy sound driver
to emulate a hardware device. Depending on the compo-
nent’s task, one of the audio frameworks PulseAudio or
JACK Audio Connection Kit is used in order to comple-
ment functionality on top of ALSA. Both frameworks are
distributed under the GNU Lesser Public License (LGPL).

Textual data are transferred using TCP, whereas audio
is streamed via UDP. Encoding, decoding, and streaming
are done with the GStreamer framework. A diagram of the
software stack is given in Figure 2.

Software Versions

In order to make it easier to build upon and recreate our
work, we listed all used software and their versions in Ta-
ble 1.

Software Version Purpose
Ubuntu 11.10 operating system
Asterisk 1.8.4.4 PBX server
PocketSphinx 0.7 speech recognizer
Festival 2.1 speech synthesis
GStreamer 0.10 audio streaming
PulseAudio 1.0 interface GStreamer/Sphinx
JACK 1.9.6 interface GStreamer/Asterisk
ALSA 1.0.23 interface GStreamer/Festival

Table 1: Software versions used in our setup

3.2 Audio Coding and Transportation
Conventional narrow-band telephony uses a sampling rate
of 8kHz. Festival comes with voices of either 8kHz or
16kHz (wideband). To allow for a simple setup, we chose
8kHz as the sampling rate of audio in the whole environ-
ment. The bit depth was chosen to be 16 bits per sample.
Audio is not being compressed, but transferred as RAW
PCM data. As we are transporting voice, a single channel
(mono) is sufficient.

For network transportation, the Real-time Transport
Protocol (RTP) is used. RTP is an industry standard, usu-
ally employed in VoIP systems. It is often used in combi-
nation with the Session Initiation Protocol (SIP, see Sec-
tion 3.3), for example in the Asterisk PBX server. To en-
sure the quality of service (QoS) required by a spoken dia-
log system using VoIP, RTP powers different features, such
as padding and timestamps. The RTP plugin for GStreamer
comes with a jitter buffer, but its use may not be recom-
mended as it leads to a longer runtime of the audio trans-
port.

The GStreamer multimedia framework is used for all
encoding, decoding, transformation and, streaming tasks.
GStreamer is open-source according to the LGPL, but the

plug-ins that contain audio and video codecs may be li-
censed differently. GStreamer uses a pipeline concept; it
takes an input and then forwards this input to every step in
the pipeline, one after the other. The steps are, for exam-
ple, encoding, decoding, multiplexing, demultiplexing, or
format conversion.

3.3 Components
Telephony Server

The widely used Asterisk is employed as a telephony serv-
er. It is open-source according to the GPL and can handle
a wide range of telephony protocols for private branch ex-
change (PBX) services. In order to do so, Asterisk trans-
lates all protocols into the same, internally used protocol.
This protocol is called IAX2 and can also be used to con-
nect separate Asterisk systems with each other. Asterisk is
a multi-threaded server which could enable a spoken dialog
system to handle multiple calls simultaneously. Asterisk’s
command line interface, configuration files (sip.conf and
extensions.conf ) and its powerful dialplan script allow to
take full control of the server. Our implementation relies
on SIP and RTP to establish and conduct phone calls.

In order to interface Asterisk with other components,
we use the Asterisk JACK dialplan application which then
allows us to stream the caller’s audio to the ASR node and
receive the generated audio from the TTS component. Un-
fortunately, at the time of writing these lines, Asterisk’s
JACK application was not yet functioning properly. Op-
tions how to address this issue are discussed in Section 3.4.

Automated Speech Recognition

Speech recognition is handled by Sphinx [8], an open-
source toolkit by the Speech Group at Carnegie Mellon
University in Pittsburgh, USA. The GStreamer framework
provides a plugin for Sphinx that allows to transcribe the
recognized text directly from any audio source GStreamer
can handle.

We developed a Python program that constructs a per-
manent GStreamer pipeline listening for an incoming au-
dio stream. When audio from the telephony component ar-
rives, it gets transcribed. Sphinx comes along with a voice
activity detector (VAD). The recognized text chunks are
sent via TCP connection to the voice browsing component.

Voice Browser

We are currently exploring several alternatives for open-
source voice browsers including OpenVXI (a library orig-
inally developed by SpeechWorks and now maintained by
Vocalocity) or building a browser from scratch.

The interfaces to both ASR and TTS on the other hand,
are already defined and kept simple. The interface between
voice browser and ASR acts as a TCP server, waiting for
connections. If a client connects and sends a text to be eval-
uated, this text gets forwarded to the actual voice browser.
The interface to TTS acts as a TCP client. A response com-
ing from the voice browser is sent to the TTS. Hence, the
TCP server and client together act as a wrapper around the
voice browser.

Speech Synthesizer

As speech synthesizer, the open-source software Festival
[9] is used. This synthesizer is developed at the Center



Linux Kernel

Dummy Sound Driver

ALSA

Network Interface

TCP/IP

gstreamer

PulseAudio JACK

Audio and Network Stack

Festival

Sphinx

VoiceXML Browser

Asterisk

Audio Encoding/Decoding 
and Streaming

#3

#1 #2

#4

Figure 2: Diagram of the underlying software stack

for Speech Technology Research at the University of Edin-
burgh, UK, and is distributed under a free X11-type license
which grants unrestricted commercial and non-commercial
use.

Festival’s speech engine is invokable using an interac-
tive command-line interface (which supports scripting via
the Scheme language). It can also process text from the
operating system’s standard input (STDIN), and it can run
as a TCP server that synthesizes text sent by connected
clients. Under the first impression, the TCP variant seems
to be a good choice, as the synthesizer could be invoked
by a foreign host—such as a voice browser. The down-
side to this approach is that it would be more difficult to
implement further logic into the process, such as control-
ling multiple streams and ensuring security. Thus, we de-
cided to implement a TCP server on our own using Python,
which then invokes Festival. This way, further features can
more easily be implemented.

Festival can only output the synthesized speech to the
system’s standard audio output (an ALSA playback chan-
nel) or write it into a .WAV file. As we need to stream the
audio back to Asterisk, this is quite problematic. Writing
a file and reading the file back from a hard disk is not an
option, as it would cause too much lag. But it is also not
directly possible to make use of the signal on the system’s
audio output, as it is treated by ALSA as a playback chan-
nel.

There are two solutions to this problem. The first one
includes setting up the PulseAudio framework, which
works on top of ALSA and provides a so-called “moni-
tor device” that loops playback back to a virtual recording
device (input device). The audio input can then be further
processed, for example by GStreamer. This solution would
set up a permanent GStreamer pipeline, streaming all audio
that is played on the system to the telephony server.

The second solution makes use of the Festival plugin
for GStreamer. With every chunk of text that needs to be
synthesized, a new GStreamer pipeline is invoked that uses

Festival to synthesize the text and then directly forwards it
to the telephony component. This solution is preferable,
as PulseAudio is not needed, and there is no permanent
pipeline running. Not needing PulseAudio simplifies the
software stack significantly, as it is rather complex to set
up PulseAudio and its dependencies in a headless (i.e. vir-
tual, lacking a graphical user interface) environment. This
solution could not be tested yet, although it is promising.

3.4 Issues
The only issue with the proposed architecture is the JACK
dialplan application used to interface Asterisk and JACK.
This application is provided by Asterisk, and its documen-
tation can be found in Asterisk’s user guide. However,
when properly using the JACK dialplan application, it si-
lently fails, producing neither errors, warnings nor debug-
ging information in both the Asterisk command line in-
terface and the JACK daemon process. To cope with this
issue, a newer version (see Table 1) of Asterisk could be
deployed hoping that this issue will then be resolved. In
case this will not result in the desired outcome, different
private branch exchange (PBX) servers could be evaluated
in respect to their connectability to JACK or other audio
frameworks and libraries which can be set up to work with
GStreamer (see Figure 2).

4 Conclusion and Future Work
This paper shows that it is possible to build a distributed
spoken dialog system based solely on open-source com-
ponents. There are still some issues open with the cur-
rent setup, in particular the interface between Asterisk and
GStreamer and the choice of a voice browser, but both are
issues that can be adressed and solved.

This implementation assumes a simplistic scenario
with only one call at a time. In a real-world scenario, this
will rarely be the case. Instead, spoken dialog systems are



required to be capable of handling multiple calls at once
(multi-port spoken dialog systems).

To meet the requirements of a real-world scenario, a
fifth component must be developed that acts as a supervisor
to the other ones. It has to work closely together with the
telephony server and must handle different calls separately.
It would do so by adding a control layer on each network
communication so that every instance of streamed, sent, or
processed text or audio is assigned to a specific communi-
cation.

This is where the advantage of a distributed and open
implementation gets obvious: The system has a high de-
gree of scalability. If one of the servers is overloaded, the
supervisor can route traffic over a different server with the
same functionality. To achieve this, the supervisor compo-
nent would also act as a load balancer.

Another addition to the system would be a security in-
frastructure to ensure encrypted and safe network commu-
nication. In a professional environment, this feature would
be inevitable. The great advantage of using open-source
software is that existing software can easily be integrated
with the current setup. The load balancer BalanceNG, for
instance, offers paid technical support and thus would be a
good choice in productive environments. Security, on the
other hand, could be handled via the OpenSSL library.

Fixing the existing issues and developing a supervisor
component are the next steps towards a distributed, open-
source spoken dialog system that can compete with com-
mercial solutions.

References
[1] C. Hemphill, J. Godfrey, and G. Doddington, “The ATIS

Spoken Language Systems Pilot Corpus,” in Proc. of the
Workshop on Speech and Natural Language, (Hidden Valley,
USA), 1990.

[2] M. Walker, J. Aberdeen, and G. Sanders, 2001 Communica-
tor Evaluation. Philadelphia, USA: Linguistic Data Consor-
tium, 2003.

[3] D. Suendermann, Advances in Commercial Deployment of
Spoken Dialog Systems. New York, USA: Springer, 2011.

[4] A. Hunt and S. McGlashan, “Speech Recognition Grammar
Specification Version 1.0. W3C Recommendation,”

[5] L. Tichelen and D. Burke, “Semantic Interpretation for
Speech Recognition (SISR) Version 1.0. W3C Recommen-
dation,”

[6] M. Brown, A. Kellner, and D. Raggett, “Stochastic Language
Models (N-Gram) Specification. W3C Working Draft,”

[7] S. McGlashan, D. Burnett, J. Carter, P. Danielsen, J. Ferrans,
A. Hunt, B. Lucas, B. Porter, K. Rehor, and S. Tryphonas,
“VoiceXML 2.0. W3C Recommendation,”

[8] K. Seymore, S. Chen, S. Doh, M. Eskenazi, E. Gouvea,
B. Raj, M. Ravishankar, R. Rosenfeld, M. Siegler, R. Stern,
and E. Thayer, “The 1997 CMU Sphinx-3 English Broad-
cast News Transcription System,” in Proc. of the DARPA
Broadcast News Transcription and Understanding Work-
shop, (Lansdowne, USA), 1998.

[9] P. Taylor, A. Black, and R. Caley, “The Architecture of the
Festival Speech Synthesis System,” in Proc. of the ESCA
Workshop on Speech Synthesis, (Jenolan Caves, Australia),
1998.


	Introduction
	General Architecture
	Implementation
	Software Stack
	Audio Coding and Transportation
	Components
	Issues

	Conclusion and Future Work

