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Abstract
Voice biometrics has been applied to enhance the security of
spoken language proficiency tests and ensure valid test scores
by detecting fraudulent activity. These methods can, however,
be triggered by certain distortions, including background noise
and adjacent test-takers, resulting in false positive alarms. In
this paper, a two-layer bi-directional LSTM RNN model is em-
ployed to detect these distorted (unusable) responses and a sub-
sampling method is applied to reduce the difficulties of model
training caused by very long input sequence and imbalanced
training data. The system is evaluated on a corpus that was
collected from an assessment of English language proficiency
around the world. Results show that our approach significantly
outperforms two baselines: a Gaussian mixture model (GMM)
classifying frame-level features and an AdaBoost classifier op-
erating on i-vectors. Our system’s F-score in unusable response
detection is 0.60 compared to 0.43 and 0.49 for the two baseline
systems.
Index Terms: voice biometrics, unusable response detection,
bi-directional LSTM RNN paralinguistics

1. Introduction
In automated test assessment systems, a speech biometric sub-
system is an essential component to verify if the test participant
is the registered user. The state-of-the-art approach for speaker
verification is to extract i-vector features [1] from two utter-
ances and calculate the distance between them. If the distance
is above a threshold, then the speakers of the two utterances are
considered to be different. This approach is complicated by the
fact that the spoken responses can be collected from different
environments (room size, microphone type, background noise).
Furthermore, in some recordings, the signal is dominated by
the background noise or there is no speech in the audio at all.
Another distortion comes from technical recording issues such
as clipping, which greatly reduces the quality and intelligibil-
ity of the speech. In all cases, the spoken responses cannot be
analyzed by the speech biometric system. To improve speaker
verification performance, then, we need to design a model to
filter out the unusable responses automatically. This model can
also be applied to evaluate the quality of the audio recording be-
fore the test starts, helping the user make adjustments to avoid
recording issues altogether.

In previous work, Higgins et al. [2] developed a filter-
ing model to filter non-scoreable responses caused by techni-
cal problems before sending recordings to an automatic speech
scoring system. They used a regression model based on four
features: the number of distinct words in the speech recogni-
tion output, the average speech recognizer confidence score,

the average power of the speech signal, and the mean abso-
lute deviation of the speech signal power. The model achieved
90% accuracy, but 38.5% F-score because the data are imbal-
anced: only around 1% of the speech was non-scoreable. Yoon
et al. [3] extracted features from automatic speech recognition
results and signal processing and trained a decision tree model
on the features to distinguish between non-scorable spoken re-
sponses and normal spoken responses. They achieved 96.8%
accuracy and 59.4% F-score on spoken responses of the inter-
national English proficiency test dataset for the test participants
in India. The non-scorable data makes up around 30% of the
spoken responses. In our task, the class distribution is as imbal-
anced as that in [2], which makes it challenging to fine-tune the
classification model. The spoken responses are recorded with
different environments (microphone type, room geometry, noise
type) and by speakers from different countries, which makes the
task more challenging.

Many research show the imbalanced class distribution af-
fects the performance of the classification models [4][5][6]. Liu
et al. [7] trained multiple classifiers on subsets of the majority
class respectively and cascade the models. Training the mod-
els on small proportions of the data may fail to cover all pat-
terns distributed in the samples, especially for the deep neural
networks which require large-scale data. Yap et al. [8] show
that over-sampling the minority class samples helps improve the
classification performance. Based on the idea, we investigate
the methods to enlarge the size of unusable speech samples.

Recently, Deep Neural Networks with Long Short-Term
Memory (LSTM) structure has been widely applied in many
fields [9][10][11][12]. The model is designed for processing
time-series data. While few papers have made use of the tem-
poral information of the speech in this task, as we do here, be-
cause sequential patterns in the spoken responses can help us
distinguish unusable speech from normal speech. The gates and
memory cells inside the LSTM structure prevent vanishing gra-
dient throughout the back propagation [13], however, it’s still
difficult when the input is extremely long. In this paper, we
design a bidirectional LSTM neural network model [14] for un-
usable spoken response detection. We avoid using ASR fea-
tures compared with [3] since they depend on the performance
of the ASR system and they are also not suitable when applying
the detection model as the front-end in the testing software. In-
stead, we extract the features from the spoken response itself us-
ing signal processing methods and put them in sequential order.
Then we train a BLSTM model on the extracted features. To
overcome the long-input problem and the data imbalance prob-
lem, we design a sub-sampling method to enlarge the number of
unusable speech samples in the training data and a unanimous-
voting method to improve the robustness of the predictions.



2. Data
We used a large collection of spoken responses from an interna-
tional English proficiency assessment. The assessment prompts
speakers to provide responses lasting between 45 and 60 sec-
onds each. All items elicit spontaneous, unconstrained, natural
speech.

The responses were collected from a large number of differ-
ent test centers, and some spoken responses had serious techni-
cal difficulties that obscured the content of the responses despite
various efforts to control the quality of the recordings. Trained
human raters labeled these responses as unusable.

Analyzing these unusable responses in our dataset revealed
four different types:

• No Response: Total Silence. The silence in this cate-
gory is what you would hear if the microphone was not
plugged in. No ambient noise can be heard. (Note: This
is not the same as when the candidate simply chooses not
to speak and noises such as breathing, coughing, or the
occasional background sound can be heard).

• Constant Noise: Responses with constant noise in the
recording that obscures the candidate response (buzzing,
clicking, crackling, static, or other mechanical noise).

• Distorted recording: Spoken response is too distorted to
evaluate fairly. This group includes responses with a fast
playback, slow playback, or an over-amplified and dis-
torted spoken response not covered by the “Noise Con-
stant” category.

• Missing Samples: Parts of the audio are missing and the
test taker’s voice often cuts in and out.

We evaluate our system by two speech detection tasks: a)
distinguishing between speech and non-speech and b) between
usable speech and unusable speech.The distribution of normal
speech and unusable speech is highly unbalanced. In non-
speech responses, there are only ”No Response” and ”Constant
Noises”. The unusable spoken responses cover all types de-
scribed above, which is more challenging. The data partition
is shown in Table 1. We split the Training&Validation samples
into 70% as the training set and 30% as the validation set ran-
domly. The numbers of spoken responses for the two classes
in these two tasks are designed according to the distributions in
the real data set. The response is labeled as non-speech by hu-
man raters if there is no speaker talking in the whole audio. The
response is labeled as normal speech if the score given by the
raters is greater than zero.

Figure 1: Non-speech due to microphone malfunction

Figure 2: Unusable speech due to clipping

Table 1: Data Partition for Two Detection Tasks

Task Training & Validation Test
speech/non-speech 40,000/400 40,000/400
usable/unusable 43,027/579 43,822/580

Figure 1 and Figure 2 show examples of non-speech and
unusable spoken responses, respectively.

3. Method
3.1. BLSTM Model

Recently, LSTM Recurrent Neural Networks (RNNs) have
been successfully used in many applications of machine learn-
ing (e.g., speech recognition, fMRI classification), especially
when dealing with time-series data. This model is de-
signed to address the vanishing gradient problem observed
in traditional RNNs [13]. Given an input sequence X =
(x1, x2, x3, . . . , xT ), the states of an LSTM evolving accord-
ing to: 

f̃t
ĩt
õt
g̃t

 =Whht−1 +Wxxt + b, (1)

ct = σ(f̃t)� ct−1 + σ(ĩt)� tanh(g̃t), (2)

ht = σ(õt)� tanh(ct), (3)

where Wh ∈ R4dh×dh , Wx ∈ R4dx×dx , σ is the logistic func-
tion, and the � operation is the Hadamard product.

The drawback of the LSTM model is that it can only make
use of past information. One solution to this problem is the
bidirectional LSTM model (BLSTM) [9][10]. In a BLSTM,
two separate LSTM layers operate on the same input sequence,
one in the forward direction and the other in the backward di-
rection. In this way, both past and future context can be utilized
to improve the performance.

3.2. Sub-sampling Data

Unusable spoken response detection can be regarded as a
sequence-to-tag task, in which the binary classification is per-
formed based on the given acoustic feature sequence. BLSTM
is powerful for time series prediction and has been successfully
applied to solve a wide range of machine learning problems
with sequence data. However, when we apply BLSTM for our
task, we need to solve two problems:

1) Very long sequence. The spoken responses last between
45 to 60 seconds. The length of the sequence in terms of the
number of frames could be 4,500 to 6,000 if short time Fourier
transform (STFT) with 10 ms windows shift is employed to
acoustic feature extraction. Although BLSTM is capable of
learning and remembering long sequences of inputs, it can still
be a challenge for BLSTM if the sequence-to-tag mapping with
only one output while very long input sequences are used in the
task. The challenge comes from model converging too slowly or
vanishing gradients which may result in an unlearnable model.

2) Imbalanced or skewed class distribution. The percentage
of unusable spoken responses generally ranges from 1% to 5%
in the training data which are randomly collected from an inter-
national English proficiency assessment. Zhu et al.[6] show that
the class imbalance increases the difficulty of training the cost-
sensitive neural networks. Training the neural networks tends to



be overwhelmed by the class that makes up a larger proportion
of the training data. It is essential to balance the class distribu-
tion.

Sample 100 frames

Spectrogram/MFCC features

Final Feature Matrix

Figure 3: Sub-sampling features

Du et al.[15] employ a random sub-sampling approach to
3D convolutional neural networks based video action detection.
The system picks 16 frames randomly distributed between the
beginning and the end of the video, then concatenates these
frames to form the final feature vector sequence. Their results
show that sub-sampled features preserve the information in the
video. Inspired by their promising results, we extend the sub-
sampling idea to BLSTM-based unusable spoken responses de-
tection. The response is finally represented by an N*M feature
matrix, where N is the number of sub-sampled frames and M
is the dimension of STFT-based feature vector. We set N to be
100. Three different sub-sampling strategies are investigated for
addressing the problem of very long input sequence, as shown
in Figure 3:

• Extract 100 contiguous frames in the middle of the audio
• Extract 100 random frames between the beginning and

the end and concatenate these frames together
• Split the audio into 5/10/20 equal segments, concatenate

the first 20/10/5 contiguous frames from each segment

To overcome the data imbalance problem, we increase the
number of samples for every unusable response while we only
extract one feature matrix from every usable response.

The procedure is described as shown in Algorithm 1. Each
sample is a N ∗M feature matrix. We generate 100 such sam-
ples from every unusable spoken response and only generate
one sample from every usable speech. For contiguous frames
and equal-segment frames, we shift the starting point with win-
dow size as 1 and extract 100/5/10/20 for each segment. By this
way, the number of unusable speech feature samples is the same
as the number of usable speech feature samples.

3.3. Unanimous-voting Method

For the testing procedure, we extract 5 random samples of 100
frames from each spoken response. For the other sub-sampling
methods, the 5 samples are extracted with window shift 1 in
every segment. Then we predict 5 labels for the 5 samples. The
formula is defined as followed:

Label =

{
0, if Pi ≥ threshold, ∀i ∈ [1, 5]

1, otherwise
(4)

Algorithm 1 The procedure to balance class distribution

1: Let X be the MFCC features of the unusable speech. The
shape of X is T × M , where T is the total number of
frames, and M is the dimension of feature vector.

2: procedure UP-SAMPLE(X). Extract sub-sampled features
3: training ← {}
4: for itr ∈ 1 : 100
5: sample← {}
6: for i ∈ 1 : N
7: rand← random(1, T )
8: sample← sample ∪X[rand, 1 :M ]
9: end for

10: Sort sample in sequential order
11: training ← training ∪ sample
12: end for

If all the samples predictions are above the threshold, the final
prediction is set to be unusable speech, otherwise, the prediction
is usable speech. We fine tune the threshold on the validation
data for each sub-sampling method.

4. Experiments

We extract spectrogram and MFCC features using the LibROSA
Python library [16]. The length of the FFT window for the spec-
trogram features is 512 samples with 256 overlap, thus the di-
mension of the frequency domain vector is 257. The length of
the FFT window for MFCC features is 2048 and the dimension
of MFCC features is 39. The overlap size between frames is
512.

We train the BLSTM models using Keras Toolkit [17] with
TensorFlow [18] as the backend. All models have two BLSTM
layers with 32 neural units and one fully-connected layer with
one neural unit. The activation function after the output layer is
set to be a sigmoid function. We use RMSProp optimizer with
a learning rate of 0.001. We train the models with 80 epochs in
total, saving the weights of the model with the highest validation
accuracy.

We evaluate our system on the two tasks described in Sec-
tion 2. We apply our sub-sampling method to the training data
and train the BLSTM model on the generated features. For eval-
uation, there is no way to only enlarge the non-speech or unus-
able speech samples in the test data since we don’t know the
ground truth. We apply the unanimous-voting method on each
spoken response and get the final prediction. We compare our
system with the following baselines.

4.1. Gaussian Mixture Model Baseline

As a comparison for the BLSTM model, we use a likelihood
test between two GMMs. First we extract MFCC features using
Kaldi’s feature extraction functions [19]. Then we train two
GMM models, one on the non-speech/distorted speech and the
other on the usable speech. The prediction is at the frame level.
In the testing process, we calculate the average log-likelihood



of all the frames as follows:

L(usable) =
1

T

T∑
i=1

log
∑

g∈usable

P (Xi | Y = g) (5)

L(unusable) =
1

T

T∑
i=1

log
∑

g∈unusable

P (Xi | Y = g) (6)

ratio =
L(unusable)

L(usable)
(7)

Where g indexes Gaussians in the mixtures, Xi is the MFCC
feature for frame i, T is the number of frames in the spoken re-
sponse. We set a threshold t, the response is labeled as unusable
if ratio > t, otherwise as usable.

4.2. i-vector-based Baseline

An i-vector, which is a compact, low dimensional vector rep-
resentation of an utterance, is a factor analysis based approach
to modeling speech in a text-independent manner [1]. This ap-
proach addresses the problem caused by the variable length of
spoken utterances. It is the state-of-the-art front-end for speaker
recognition and language recognition. To extract the i-vector, a
low-rank, rectangular T -matrix, which represents the total vari-
ability in the acoustic space, is estimated using the EM algo-
rithm. A T -matrix estimated from 800 hours of speech from
8,700 test-takers, which was used to build a speaker recogni-
tion system [20], is applied here to extract i-vectors as the fea-
ture vectors for a second baseline system. Decision tree (DT),
SVM, AdaBoost, and logistic regression (LR) classifiers were
compared for classifying the i-vectors. Among those classifiers
trained on the same training set and evaluated on the same test
set as those used for GMM baseline, the AdaBoost classifier
achieves the best performance, so we report its results as the
baseline results for the i-vector-based approach.

5. Results and Analysis
We evaluate the systems’ performance using precision, recall,
and F-score metrics. The corresponding results are shown in
Table 2 and Table 3, respectively. Table 2 shows that the GMM
model achieved an F-score of 0.81 and the AdaBoost classifier
using i-vectors achieves an F-score of 0.89. Comparing the fea-
tures with different sub-sampling methods, we find the model
trained on 100 random sub-sampled frames gets a higher F-
score than the one trained on contiguous frames. The results
make sense since the 100 random frames cover the information
from the beginning to the end, while the contiguous frames only
contain the information of one segment in the audio. We then in-
vestigated the performances of different sub-sampling methods
for the MFCC features. The BLSTM model trained on random
frames achieves an F-score of 0.90, which outperforms the con-
ventional approaches, i.e., GMM baseline and i-vector-based
baseline. The performance gap between our proposed approach
and the i-vector-based approach is marginal, however.

The task of unusable speech detection is much more chal-
lenging than the non-speech detection task. We train our
BLSTM model on random sub-sampled features. Table 3 shows
that the BLSTM model achieves an F-score of 0.60, which is
much higher than the GMM and i-vector baselines. We analyze
some audio examples from the spoken responses and find that

1 Continuous frames 2 Random frames 3 5 × 20 frames 4 10
× 10 frames 5 20 × 5 frames

Table 2: Non-speech Detection Results

Model Feature Precision Recall F-score
GMM MFCC 0.76 0.89 0.81
AdaBoost i-vector 0.92 0.87 0.89
BLSTM Spectrogram (A)1 0.71 0.68 0.69
BLSTM Spectrogram (B)2 0.91 0.81 0.86
BLSTM MFCC (A)3 0.86 0.84 0.85
BLSTM MFCC (B)4 0.63 0.78 0.70
BLSTM MFCC (C)5 0.92 0.59 0.72
BLSTM MFCC (D)2 0.90 0.90 0.90

even though some spoken responses are distorted due to micro-
phone issues when the human export can still understand the
speech, they will give it a non-zero score. The human experts
will not label the speech as “distorted” unless it is so highly
distorted that it is unintelligible.

Table 3: Unusable Speech Detection Results

Model Feature Precision Recall F-score
GMM MFCC 0.51 0.38 0.43
AdaBoost i-vector 0.59 0.41 0.49
BLSTM MFCC2 0.61 0.58 0.60

One of motivations for using BLSTM-RNN with acoustic
features inputs is to avoid ASR system for unusable spoken re-
sponse detection. As a comparison, we investigate whether the
number of recognized words from an ASR system can be used
as a feature to distinguish between usable responses and un-
usable responses. Our ASR system [21] with i-Vector based
speaker adaptation technology can deliver a WER of 18.5% on
data used in this study. Table 4 shows the mean and standard
deviation of speech, non-speech, usable and unusable response
hypothesis. The statistics show that speech and non-speech is
distinguishable, but it’s difficult to distinguish between usable
and unusable spoken responses by using the ASR hypothesis.

Table 4: ASR Hypothesis Word Number Statistics

Task Data Mean STD

Speech/Non-speech speech 99.22 29.74
non-speech 6.34 8.80

Usuable/Unusable usable 101.00 30.05
unusuable 70.54 46.12

6. Conclusion
In this paper, we propose a BLSTM neural network to de-
tect non-speech and unusable spoken responses to spoken lan-
guage proficiency tests. This system can help filter out unus-
able responses and improve speaker verification performance.
The model trained on sub-sampled MFCC features outperforms
baseline models in both tasks. In the future, we would like to
generalize our sub-sampling method to other time-series data
classification tasks. The results show that there is still space to
improve the unusable response classification result. One pos-
sible way is combining the DNN-based model with i-vector
features to achieve a better performance (e.g. train a BLSTM-
based model to extract better i-vectors).
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