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Abstract 
Recently, text independent speaker recognition systems with 
phonetically-aware DNNs, which allow the comparison among 
different speakers with “soft-aligned” phonetic content, have 
significantly outperformed standard i-vector based systems [9-
12]. However, when applied to speaker recognition on a non-
native spontaneous corpus, DNN-based speaker recognition 
does not show its superior performance due to the relatively 
lower accuracy of phonetic content recognition. In this paper, 
noise-aware features and multi-task learning are investigated to 
improve the alignment of speech feature frames into the sub-
phonemic “senone” space and to “distill” the L1 (native 
language) information of the test takers into bottleneck features 
(BNFs), which we refer to as metadata sensitive BNFs. 
Experimental results show that the system with metadata 
sensitive BNFs can improve speaker recognition performance 
by a 23.9% relative reduction in equal error rate (EER) 
compared to the baseline i-vector system. In addition, L1 info 
is just used to train the BNFs extractor, so it is not necessary to 
be used as input for BNFs extraction, i-vector extraction and 
scoring for the enrollment and evaluation sets, which can avoid 
the use of erroneous L1s claimed by imposters. 
Index Terms: speaker recognition, DNN, bottleneck features, 
i-vector  

1. Introduction 
Deep learning, which can represent high-level abstractions in 
data with an architecture of multiple non-linear transformations 
[1], has had a huge impact on automatic speech recognition 
(ASR) and deep neural networks (DNN) for acoustic modeling 
have become the state of the art in ASR systems [2,3]. 
Motivated by the success of DNNs for acoustic modeling in 
speech recognition, many DNN based approaches have been 
tried in recent years in order to improve the performance of 
speaker recognition, with promising results [4-13]. Boltzmann 
machines or neural networks have been used to train a back-end 
classifier instead of the state-of-the-art PLDA model for 
speaker recognition [4,5]. Deep Belief Networks (DBN) have 
been trained to extract a pseudo i-vector, compactly 
representing a speech utterance in an alternative type of i-
vector, which is a projected, low-dimensional vector based 
upon factor analysis [6], or to model i-vectors  for a multi-
session speaker recognition task [7].  

Recently, phonetically-aware DNNs, which are typically 
used to train ASR systems, have also been employed for speaker 
recognition and have significantly outperformed the standard i-
vector based approach [9-12]. The phonetic information at the 

sub-phonemic senone level is used to guide acoustic modeling 
by the DNN. The well-trained phonetically-aware DNNs are 
then employed to extract Baum-Welch statistics; i.e. the DNN, 
replacing the GMM, is used to compute frame posterior 
probabilities over each of the classes (senones instead of 
Gaussian Mixture components), for i-vector based text 
independent speaker recognition [9,10]. In addition, the output 
of one of the phonetically-aware DNN’s hidden layers, also 
called bottleneck features, is used as feature vectors, instead of 
the conventional MFCC feature vectors, to train a universal 
background model (UBM) and build an i-vector extractor using 
the standard method [11]. The DNN bottleneck features, which 
can learn discriminative feature representations from a DNN 
trained in the sense of cross-entropy, are reported to achieve 
better performance on both speaker and language recognition 
tasks than using DNN output posteriors for extracting Baum-
Welch statistics [11]. 

However, to the best of our knowledge, there is little 
research work to investigate the state-of-the-art i-vector based 
speaker verification technique, focusing on a large, non-native 
spontaneous corpus. For test security, especially for test of 
language proficiency, e.g. English, recordings are all from non-
native English speakers. There are many challenges in 
developing a unified system based on phonetically-aware 
DNNs for speaker recognition in the context of large-scale 
language proficiency assessment. For instance, test takers in 
English proficiency tests can have a wide variety of L1 
backgrounds worldwide, which makes it difficult to model all 
possible non-native accent patterns. In addition, the speech 
quality from different test centers can vary a lot due to various 
recording settings and environments. 

In this paper, we focus on speaker recognition on a non-
native spontaneous speech corpus for verifying a language test 
taker’s claimed identity. We focus on using DNN bottleneck 
features, which can take advantage of phonetically-aware 
DNNs for i-vector training. Previous work [9-12] has typically 
utilized corpora which yield high ASR accuracy to obtain more 
reliable DNN posteriors. In contrast, the present study is 
performed on a corpus with relatively lower phonetic 
recognition performance. Both noise features and multi-task 
learning are integrated together to improve the frame accuracy 
of senones and to “distill” the L1 (a test taker’s native language) 
information, leading to more robust i-vector based speaker 
recognition performance. 

2. I-Vector Based System 
Based upon factor analysis, an i-vector is a compact 
representation of a speech utterance in a low-dimensional 
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subspace. In an i-vector model [13], a given speaker- and 
channel-dependent supervector M can be modeled as 
   

   m TM �� �                                      (1) 
 

where m represents a speaker- and channel-independent 
supervector, which can be estimated by a UBM; T, a low rank 
matrix, represents the total variability space;  and the 
components of the vector �  are total factors, i.e., segment-
specific standard normal-distributed vectors, also called i-
vectors, and are obtained using maximum a posterior(MAP) 
estimation. The matrix T is estimated using the EM algorithm 
[14].  

In state-of-the-art i-vector based speaker recognition 
systems [13,14],  speech utterances are first converted to a 
sequence of acoustic feature vectors, typically 20 dimensional 
mel-frequency cepstral coefficients (MFCC) and their dynamic 
counterparts; after that, speaker- and channel-independent 
super-vectors, which accumulate the zeroth, first and second 
order sufficient statistics, are computed by using the posterior 
probabilities of the classes from a pre-trained GMM-UBM;  
next, the total variability matrix, T, is used to transform the 
super-vectors to the low dimensional i-vectors, which contain 
both speaker and channel variability; then linear discriminant 
analysis (LDA) is often used to do channel compensation; 
finally a score between the target and the test speaker (or 
impostor) is calculated by a scoring function such as 
probabilistic LDA (PLDA) [15] for further compensation or by 
simply using the cosine distance.  

3. Metadata Sensitive Bottleneck Features 

3.1. Bottleneck features (BNFs)  
Bottleneck features (BNFs) are generated from a DNN in which 
one of the hidden layers has a small number of units compared 
to the other layers. It compresses the classification related 
information into a low dimensional representation. The 
activations of a narrow hidden bottleneck (BN) layer are used 
as feature vectors to train a standard GMM. It has been argued 
that BN features can improve ASR accuracy but not perform as 
well as the best DNN based system because the BNFs from the 
middle layer of the DNN degrade the frame accuracy of the 
senones. However, an approach using a DNN trained by using 
a subset of the training set for feature extraction and the 
resulting features from the whole training set used for a GMM-
HMM achieves better performance than a DNN-HMM [16]. In 
addition, a stacked BN, in which the second level consists of a 
merger NN fusing the posteriors from the first level, and linear 
activation function, which performs like an LDA or PCA 
transformation on the activations of previous layer, outperforms 
the DNN based approaches [17,18]. 

The DNN BNFs extracted from the second-last liner layer 
are used as acoustic features to train a GMM-UBM for speaker 
recognition. It has been shown that systems with BNFs achieve 
better performance than those are just using output posteriors of 
DNNs for extracting Baum-Welch statistics [11]. It is assumed 
that the loss of information at the BNFs is not much affecting 
the posterior prediction. The DNN bottleneck features should 
have the same phonetically-aware benefits as those of DNN 
posteriors, which allows the comparison among different 
speakers at the same phonetic content, since the BNFs are 
already precisely mapped to a senone-dependent space. In 
addition, BNFs carry more speaker-relevant information than 
DNN output posteriors, which aim at being speaker-

independent. Furthermore, the GMM posteriors estimated from 
BNFs are supposed to be more general than those of DNNs, 
which learn senone posteriors directly and produce a sharp 
posterior distribution. 

3.2. Metadata sensitive bottleneck features 
 

When we first employed DNNs in our speaker recognition task 
with a non-native, spontaneous speech corpus, we found that 
they were not able to achieve the same high performance as 
shown in [9-11]. We conjecture that the low frame accuracy of 
senones was caused by the wide range of L1 accents among the 
language test takers and in turn the low frame accuracy results 
poor “soft labeling” of the corresponding phonetic content. 
Fortunately, DNNs are more flexible and versatile than GMMs 
in acoustic modeling, e.g. there are no assumptions about the 
underlying statistical distributions and modality of the input 
data in DNN, both continuous and binary features can be 
augmented and modeled together naturally. Deep learning 
technologies like transfer learning or multi-task learning [19], 
which can exploit commonalities between the training data of 
different learning tasks so as to transfer learned knowledge from 
one to another, can be applied directly to acoustic modeling.  It 
has also been shown that noise-aware or room-aware DNN 
training, where noise or reverberation information is augmented 
to the input feature vectors, can reduce word error rate (WER) 
in noisy or reverberant speech recognition [20,21]. Multi-task 
learning has also been successfully employed to improve 
phoneme recognition [22] and multilingual speech recognition 
[23,24]. 

Acoustic Features Noise Info

Senones L1s

Bottleneck

 

Fig. 1. Noise-aware DNN with multi-task learning 

Based on those findings, we propose to use metadata to 
enhance BNF training for non-native speaker recognition. The 
structure of the DNN used is illustrated in Figure 1, where 
noise-aware input feature vectors and multi-task learning are 
employed. If o represents the observed feature vector, which is 
used as the input vector for DNN training, it is formed as 

� �1 1,..., , , ,..., ,t t t t t t to x x x x x n� �� � � ��                   (2) 
 

where t is the frame index; � , the number of frames for the 
sliding window; and n ,  the noise estimate. We assume that 
noise is invariant throughout a test taker’s whole utterance, i.e., 

tn can then be approximated by the average of the beginning 
and ending frames and fixed over the utterance. In Figure 1, 
there are two tasks, including: the primary one is senone 
classification, while the classification of a test taker’s native 
language, L1, is the secondary task. The objective function used 
in the multi-task learning is 

ln ( ) (1 ) ln ( )t t t t
t t

p s |o p l |o	 	
 � � �� �       (3) 
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where ts  and tl  are the senone and L1 labels at the t-th frame, 
respectively; 	 is the weight for the task and optimized in terms 
of recognition accuracy for the validation set. To prevent over-
fitting, a regularization term (also called a weight decay term) 
is added to Equation 3, or the learning can simply be terminated 
at the point where performance on a held-out validation set 
starts to deteriorate. 

4. Experiments and Results 

4.1. Corpora 
Our approaches for speaker recognition are evaluated on a 
corpus of 16 kHz non-native spontaneous speech, which is 
collected from test takers’ responses in an English proficiency 
assessment.  

The training set, which is used to train speaker recognition 
system’s hyper-parameters (GMM-UBM, DNN, i-vector 
extractor T-matrix, LDA and PLDA projection matrices) 
consists of 800 hours of speech from 8,700 test-takers.  It is 
drawn from an international assessment of academic English for 
non-native speakers, which measures the test taker’s ability to 
use and understand English at the university level. Each speaker 
has 6 utterances, i.e., 45-second spoken responses to express 
their opinions on a familiar topic or 60-second spoken responses 
based on reading and listening to relevant prompt materials, 
roughly 5 minutes per speaker. It contains a total of 140 
different L1s. The most frequent L1s are Chinese, Korean, 
Japanese, Arabic, Spanish, German, Turkish, French, Telugu 
and Hindi, which account for over 77% of the test taker 
population (L1 information was not available for 0.1% of the 
test takers). Figure 2 shows the cumulative distribution of 
signal-to-noise ratio (SNR) over the data set. 

 
Fig. 2. Cumulative distribution of SNR in the corpus 

 

The enrollment and evaluation sets are extracted from the 
same English proficiency test as that of the training set. The 
enrollment set contains 6,642 utterances from 1,107 speakers. 
The evaluation set contains 6,498 utterances from 1,083 
speakers, in which 1,000 speakers are repeated test takers, i.e., 
the same speakers as those in enrollment set but from a different 
appointment, and 83 speakers are known imposters. The time 
gap of two appointments for 90% of the repeated test takers is 
less than half a year. 

There are totally 6,001,116 trails, in which 6,828 are targets 
and the rest is non-target. Target is defined as repeated test 
takers or manually identified imposters, while non-target is 
different speakers, i.e., non-repeated test takers, from 
enrollment and evaluation sets, or imposter for repeated test 
takers. 

4.2.  Experimental setup 
The speaker recognition systems including the baseline 
conventional i-vector based system, the DNN BNF based 
system and the metadata sensitive BNF based system, are 
constructed using the tools from Kaldi [25] and CNTK [26]. 

4.2.1. Baseline system 
The front-end for the baseline speaker recognition system 
contains 20 dimensional MFCCs including C0, extracted from 
a 20 ms Hamming window with 10 ms time shift along with 
their first and second derivatives. Non-speech segments within 
utterances were deleted through an energy-based voice activity 
detection (VAD) method. Utterance-based cepstral mean 
normalization was performed on the acoustic feature vectors. A 
GMM with 2048 components and a full covariance matrix was 
trained as the UBM by using the training set mentioned in 
Section 4.1. The same training set was also used to train a 400-
dimensional i-vector extractor T-matrix as well as LDA and 
PLDA projection matrices.   

4.2.2. DNN BNF based system 
The training set mentioned in Section 4.1 was first used to train 
a GMM-HMM and then employed to train a DNN for BNF 
extraction.   

The input feature vectors used to train the GMM-HMM 
contained 13-dimensional MFCCs and their first and second 
derivatives. Tri-phone, linear discriminant analysis (LDA), 
maximum likelihood linear transform (MLLT), and speaker 
adaptive training (SAT)  were used to train the GMM-HMM in 
the maximum likelihood (ML) sense. In order to get an accurate 
frame alignment of senones for later DNN training, the 
parameters of the GMM-HMM were refined by discriminative 
maximum mutual information (MMI) training. 

We used two input feature sets to train DNNs. One is MFCC 
features with the same dimensions as those used in GMM-
HMM. The other one is 40-dimensional mel-scaled log filter-
bank features and 3-dimensional pitch related features (FBP). 
The input features stacked over a 21 frame window (10 frames 
to either side of the center frame for which predictions are 
made) are used as the input layer of the DNNs. The output layer 
of the DNNs has 4,057 nodes, the senones of GMM-HMM 
obtained by decision-tree clustering. The DNNs have 7 hidden 
layers; each layer consists of 1024 nodes except the 6th 
bottleneck layer with 60 nodes. The sigmoid activation function 
is used for all hidden layers except for the bottleneck layer, 
which is linear. All of the DNN parameters were firstly 
initialized using “layer-wise BP” pre-training [27], and then 
trained by optimizing the cross-entropy function through back-
propagation.  90% of the training set mentioned in section 4.1 
is employed to train the DNN. The remaining 10% is used as a 
held-out validation set. 

The BNFs extracted from the DNN are used to train the 
GMM-UBM, i-vector extractor T-matrix, and other hyper-
parameters as is done for a standard baseline speaker 
recognition system, as described in Section 4.2.1. 

4.2.3. Metadata sensitive BNF based system 
A DNN with the same structure as in Section 4.2.2, except for 
the input and output layers, is trained by the approach illustrated 
in Figure 1. The noise vector and the conventional feature 
vector (FBP is used here) are concatenated together as the input. 
We use 20 frames at the beginning and the end of an utterance 
to estimate the noise. Although there are a total of 140 L1s in 
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the corpus, we only use the 28 most common L1s, which makes 
up over 95% of the test taker population, as the output nodes for 
L1 classification. The other L1s are relabeled as “UNK” 
(unknown L1). The training strategies of the DNN are the same 
as described in Section 4.2.2, while Equation 3 is used as 
objective function, i.e., a weighted combination of senone 
classification and L1 classification, instead of just senone 
classification. The optimal weight 	  is 0.8 determined on the 
validation set. The L1s of the training set are used for DNN 
training and the resulting BNFs are therefore L1-sensitive. In 
our approach, the L1 info is not necessary for BNF extraction, 
i-vector extraction, or scoring for the enrollment and evaluation 
sets, which can avoid the use of erroneous L1s claimed by 
imposters. 

4.2.4. Experimental results and analysis 
The frame accuracy is often used to evaluate the performance 
of a DNN by isolating the issues caused by the vocabulary and 
the language model in the ASR system. We use it to estimate 
the accuracy of aligning the frame in the senone space. Figure 
3 shows the frame accuracy of epochs (24 hours of data in each) 
for DNNs with different input and output layers on the 
validation set. The DNN trained by FBP (filter bank+pitch) 
achieved higher frame accuracy than that trained by MFCC, i.e. 
the frame accuracy can be improved from 51.5% to 54.0%. 
Filter bank features, a relatively rawer feature than MFCCs, are 
also observed to obtain better recognition performance than 
MFCCs in DNN-based ASR. As shown in the figure, noise-
aware input features and the use of L1 classification as an 
auxiliary learning task for the DNN training can further improve 
the frame accuracy from 54.0% to 58.1%.  

In order to better understand the contributions of L1 to the 
frame accuracy, a cheating experiment randomizing L1 labels 
as DNN output nodes together with senone labels to train a 
DNN is performed. The corresponding results (FBP+Noise-
aware+L1-random) shown in Figure 3 indicate that adding the 
correct L1 information as targets to train the DNN can improve 
frame accuracy from 55.3% (FBP+Noise-aware) to 58.1% 
(FBP+Noise-aware+L1), while the randomized L1 labels as 
targets decrease the frame accuracy from 55.3% (FBP+Noise-
aware) to 54.2% (FBP+Noise-aware+L1-random).   

Table 1 shows the performance of the baseline, DNN BNF 
based and our proposed metadata sensitive BNF based systems. 
The system performance is evaluated using EER. The baseline 
system using 60-dimensional MFCCs as input features to train 
the GMM-UBM and i-vector extractor achieves a 2.51% EER. 
Neither of the two DNN BNF based systems (BNFs extracted 
from a DNN trained with MFCCs or FBPs) can outperform the 
baseline system. We conjecture that the relatively low frame 
accuracy prevents BNFs from obtaining the phonetically-aware 
benefits of DNN-based speaker recognition approaches. The 
system with the metadata-sensitive DNN BNFs, which can 
improve 4.1% of frame accuracy and also carry noise-aware and 
discriminative L1 information, achieves a lower EER than the 
baseline system with a relative 15.1% reduction in EER, i.e., the 
EER is reduced from 2.58% to 2.19%. The benefit from L1 
information to speaker recognition is much larger than that of 
noise-aware information. The improvement in terms of relative 
EER reduction is 4.26% and 11.34% by noise-aware and L1 
information, respectively. 

We also found that BNFs and MFCCs are complementary. 
The system which uses the combination of 40-dimensional 
BNFs extracted from the metadata-sensitive DNN and 20-

dimensional static MFCCs performs the best among all systems. 
40-dimensional BNFs are obtained by retraining the DNN with 
a 40-node bottleneck layer. This reduces relative EER by 
23.9%, compared to the baseline i-vector based system, i.e., the 
EER is reduced from 2.51% to 1.91%. 

There are also many features or transforms, e.g., i-vector or 
fMLLR, we can borrow from ASR to improve frame accuracy. 
However, intuitively they try to remove speaker variability 
during DNN training or make DNNs more robust to unseen 
speakers, in which the resulting features seem to be less 
discriminative for speaker recognition. A detailed survey will 
be performed in the future. 

 
Fig. 3. Frame accuracy of DNNs with different input and output 
layers on validation set 
 

Table. 1 . EER of different systems 

Systems EER (%) 
Baseline system (MFCC), 60-dim    2.51 
BNF (MFCC), 60-dim    2.85 
BNF (FBP) , 60-dim    2.58 
BNF (FBP+Noise-aware), 60-dim 
BNF (FBP+Noise-aware+L1), 60-dim    

2.47 
2.19 

BNF (FBP+Metadata), 40-dim + MFCC, 20 dim 1.91 

5. Conclusions 
In this paper, we employ metadata (L1  of a test taker) sensitive 
BNFs to improve the performance of speaker recognition on a 
corpus of non-native spontaneous speech. The experimental 
results show that metadata sensitive BNFs are beneficial to 
speaker recognition. The system with the fusion of BNFs and 
MFCCs achieves the best performance among all systems. Our 
future research will explore the effects of additional metadata, 
e.g. age, and the configuration of DNNs to the performance of 
BNFs used for speaker recognition. 
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