
KALDI GOES ANDROID

C. Gaida1,2, R. Petrick2, D. Suendermann-Oeft1,3

1 DHBW, Stuttgart, Germany 2 Linguwerk, Dresden, Germany
3 EMR.AI, San Francisco, USA

{christian.gaida,rico.petrick}@linguwerk.de david@emr.ai

ABSTRACT

We describe the development of an application running a
derivative of the Kaldi Gaussian Mixture Model (GMM)
decoder physically on a mobile Android device. The applica-
tion is written in C/C++ using the Qt development framework
providing abstraction of the audio interface, the creation of a
frontend and a multi-threaded architecture. It is shown that
this open-source large-vocabulary speech recognition system
successfully runs on Android as real-time decoder of live
streamed audio on ordinary smart devices.

Index Terms— Open-Source, Large Vocabulary, Contin-
uous Speech Recognition, Kaldi, Android

1. INTRODUCTION

Large Vocabulary Continuous Speech Recognition (LVCSR)
on mobile devices is almost exceptionless accomplished by
client-server network solutions, e. g. Google Speech [1], Ap-
ple Siri [2] or Nuance Dragon Dictate [3]. Audio capture, at
times feature extraction to compress data on the client side,
and visualization of the recognition results are performed on
the mobile device, but the decoding is processed on an ex-
ternal server. A reason for such a solution is the limitation
of resources of mobile devices with respect to memory and
computational power.

However, decoding on an external server has certain draw-
backs:

• It requires internet connectivity.

• Applications use servers provided by foreign compa-
nies. This affects data privacy, e. g. personal or con-
fidential data in the medical domain or in the field of
government or law.

• The modification or customization of the decoder by
the user is difficult or impossible.

• The response time of the system depends on the quality
of the internet connection and work load of the server.
Applications like control or dictation require feedback
in real-time, otherwise the usability is compromised.

The increasing computational power of tablets and smart
phones makes it possible to accomplish the speech recogni-
tion task locally on the device. The presented work describes
the port of a Kaldi-based, open-source large-vocabulary de-
coder on a mobile device running Android. The only existing
related work is, to the best of our knowledge, the develop-
ment of PocketSphinx [4], a decoder initially designated for
embedded platforms and subsequently ported to Android [5].

The choice of the Kaldi toolkit [6] was motivated by the
results of comparisons [7, 8, 9, 10, 11] of open-source speech
recognition toolkits. It was consistently shown that Kaldi of-
fers the best performance of the compared toolkits, even in
the case of using Gaussian Mixture Models (GMM), instead
of the even better performing Deep Neural Networks (DNN)
for acoustic modelling. This work is based on GMM related
examples of the Kaldi toolkit.

The paper is organized as follows: in Section 2 the de-
velopment of the Android application is described. Section 3
gives an overview of the features of the final application. In
Section 4 we discuss observations, conclusions and suggest
future work.

The present work was carried out in the scope of the
project OASIS (Open-source Automatic Speech recognition
In Smart devices) [12], sponsored by the Baden-Wuerttemberg
Ministry of Science and Art.

2. DEVELOPMENT

The development was done on a Linux Ubuntu 14.04.1 LTS
64-bit system. The software development environment in-
cludes

• Qt1, Version 5.3.1, Community Edition,

• Android Native Development Kit2 (NDK), Version 10,
64-bit systems, 32-bit target,

• Android Software Development Kit (SDK) as part of
the Android Studio Bundle3, Version 135.

1Available from http://qt-project.org/.
2Available from https://developer.android.com/tools/

sdk/ndk/index.html.
3Available from http://developer.android.com/sdk/



The goal was the creation of a Kaldi-based solution com-
pletely from source. Qt is a software development kit for
applications written in C/C++, which aimes at platform in-
dependent development. Associated with the Android NDK
and SDK it provides tool chains to cross-compile to ARM4

architecture and tools to deploy applications on Android. Qt
was also chosen for the development of an interface for live
audio recording and creation of a modular, multithreaded ap-
plication. ARM architecture has special features e. g. low
power consumption and is therefore primarily used in the do-
main of embedded devices, smart phones and tablets.

The entry point of the project was the source code of
the implementation of the online-gmm-decode-faster exam-
ple. Dependencies with respect to portaudio were removed,
because this low-level audio I/O application programming in-
terface (API) accesses the audio interface of the installed op-
erating system directly. Therefore it supports desktop systems
but contradicts the platform abstraction of Android.

The language model implementation of Kaldi depends on
the OpenFst Library5. This library is written in C, has no
obstructive dependencies, and could therefore be simply in-
cluded and cross-compiled.

The matrix calculus of Kaldi is based on the Basic Linear
Algebra Subprograms6 (BLAS) and the Linear Algebra Pack-
age7 (LAPACK). The structures and routines of these libraries
are optimized for efficient computation of vector and matrix
operations. Higher-level libraries like Automatically Tuned
Linear Algebra Software8 (ATLAS) or OpenBLAS9 are alter-
natives, but also based on BLAS and LAPACK.

The port of the math dependencies was the most challeng-
ing part of the project. The BLAS and LAPACK sources are
written in Fortran, directly cross-compiling would have re-
quired the build of a Fortran compiler for Android. The ad-
ditional hardware dependent optimization of the higher-level
libraries with respect to the system, on which the library is
build, made a port very complicated or impossible. Finally,
the low-level BLAS and LAPACK sources were parsed to
C with f2c, mapping dependencies were identified and the
source included. To prevent problems caused by unused code,
the Kaldi source and included LAPACK source were partially
reduced.

A live audio interface was created using the Qt frame-
work, recording raw audio from microphone and writing sam-
ples to a separate buffer. The decoder example implemen-
tation was running and polling audio data in a loop, which
caused blocking behaviour and suppressed audio recording in
the decoder’s thread. This was resolved by development of

installing/studio.html.
4Advanced Reduced Instruction Set Computer (RISC) Machines
5Available from http://www.openfst.org/twiki/bin/

view/FST/.
6Available from http://www.netlib.org/blas/.
7Available from http://www.netlib.org/lapack/.
8Available from http://math-atlas.sourceforge.net/.
9Available from http://www.openblas.net/.

a decoder module, which is completely seperated from the
audio source. It encapsulates only the decoding and reads
data from the separate buffer. Timer triggered processing was
used to reduce CPU time usage. Development was finished
by creating a multi-threaded application running audio input
and decoder in seperate threads to make use of multi-core pro-
cessor architecture. A graphical user interface (Figure 1) was
created for testing and demonstrating purposes.

3. APPLICATION FEATURES

The application was successfully run on a two year old
Samsung Galaxy Tab2 10.1 and a more powerful Samsung
Galaxy S5 Smartphone. A language model (an ARPA 3-gram
model) with a vocabulary of 6,452 words and an acoustic
model were trained on the Verbmobil 110 [13] (VM1) corpus
with 285k training tokens and approximately 30 hours of
speech.

The runtime features of the Samsung Galaxy Tab2 10.1
are follows:

• Acoustic model size: 3.2 MB,

• Language model size: 95.0 MB,

• Runtime binary size: 32.2 MB,

• RAM usage: up to 200 MB (installed 1 GB),

• CPU usage: up to 78.2 % of the total power of two
1.0 GHz cores.

The decoder was executed with standard parameters. Inter-
nally the decoder module is not multithreaded, so it uses a
single core. The response time of the system was 0.4-0.8 s
in the case of completely or partially known phrases. The
processing time increases in the case of word sequences not
occuring in the language model training, or low quality of the
recorded audio from microphone, e. g. noise or background
voices. E. g. the delay between the ending of the utterance
of the unknown phrase ”Hallo, mein Name ist Herr Mueller.
Ich fliege mit dem Flugzeug zu einer Tagung nach Berlin.”
and displaying the complete result in the text box was 1.1 s
in a slightly noisy environment. Speed up of processing with-
out changing the Kaldi implementation could be achived by
reduction of the search space by decreasing the search beam
width.

4. CONCLUSIONS

We described the development of an Android application
used for continuous speech recognition with real-time re-
sponse based on the Kaldi toolkit. This work includes two
major achievements:

10Available from Bavarian Archive for Speech Signals (BAS),
http://www.phonetik.uni-muenchen.de/
Bas/BasVM1eng.html.



Fig. 1. Screenshot of the graphical user interface created for testing and demonstration purposes. The left text box shows the
hypotheses, the right text box is used for debugging. Buttons and spin boxes are used to control live streaming audio from
microphone, decoder and audio output. The horizontal bars show logarithmic microphone level and load of the buffer. The
shown examples are decoding results of the spoken phrases ”Hallo, mein Name ist Herr Mueller. Ich fliege mit dem Flugzeug
zu einer Tagung nach Berlin. Wenn das klappen wuerde, das waere wunderbar. Okay, auf Wiedersehen und vielen Dank.” and
”Mein Name ist Frau Meier, am neunundzwanzigsten (hesitation) ist nicht so gut, also waere der erste Oktober besser.”

• running the open-source large-vocabulary decoder lo-
cally on an Android device and

• processing live streamed audio with this decoder.

The use of Kaldi without extensive changes has some
drawbacks with respect to the limited resources on mobile
devices. The model sizes, especially of the language model,
can be very large and, due to the restricted size of RAM, lan-
guage models trained on large corpora e. g. the Wall Street
Journal11 (WSJ) corpus [14] cannot be used. The necessary
high computational power reduces battery time contrary to
the idea of free mobility.

The described approach of porting the Kaldi decoder of-
fers many possibilities of further development and improve-
ment. The quality of the audio data from microphone input is
device dependent and has a markable influence of the recogni-
tion speed and accuracy. Especially the compact construction
of smart devices, the microphone integrated into the casing
along with computational hardware, touch screen and speak-
ers, make the audio input prone to transferred vibrations and
noise. A speech signal improvement with e. g. noise re-
duction is planned along with a voice activity detection, com-
bined with application logic to run the decoder only when

11Orderable from Linguistic Data Consortium (LDC),
https://catalog.ldc.upenn.edu/LDC94S13A.

necessary to reduce CPU usage and save battery power. We
will also look into using DNNs for acoustic modelling as na-
tively supported by Kaldi.

A video of the application [15] is shown on Youtube. The
source code will be subsequently made available to the com-
munity in a repository.



5. REFERENCES

[1] J. Adorf, “Web Speech API,” Tech. Rep., KTH Royal
Institute of Technology, Stockholm, Sweden, 2013.

[2] Apple Inc., About Siri, 2014, http://support.
apple.com/kb/ht4992.

[3] Nuance Communications, Inc., Dragon Dictation,
2014, http://www.nuancemobilelife.com/
support/USA/engusa/dragon-dictation.

[4] D. Huggins-Daines, M. Kumar, A. Chan, A. Black,
M. Ravishankar, and A. Rudnicky, “Pocketsphinx: A
Free, Real-Time Continuous Speech Recognition Sys-
tem for Hand-Held Devices,” in Proc. of the ICASSP,
Toulouse, France, 2006.

[5] Carnegie Mellon University, pocketsphinx on Android,
2014, http://cmusphinx.sourceforge.net/
wiki/tutorialandroid.

[6] D. Povey, A. Ghoshal, G. Boulianne, L. Burget,
O. Glembek, N. Goel, M. Hannemann, P. Motlicek,
Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer, and
K. Vesely, “The Kaldi speech recognition toolkit,” in
Proc. of the ASRU, Hawaii, USA, 2011.

[7] C. Gaida, P. Lange, R. Petrick, P. Proba, A. Malatawy,
and D. Suendermann-Oeft, “Comparing Open-Source
Speech Recognition Toolkits,” Tech. Rep., Baden-
Wuerttemberg Cooperative State University, Stuttgart,
Germany, to appear.

[8] K. Vertanen, “Baseline WSJ Acoustic Models for HTK
and Sphinx: Training Recipes and Recognition Exper-
iments,” Tech. Rep., University of Cambridge, Cam-
bridge, UK, 2006.

[9] X. Yao, P. Bhutada, K. Georgila, K. Sagae, R. Artstein,
and D. Traum, “Practical evaluation of speech recogniz-
ers for virtual human dialogue systems,” in Proc. of the
LREC, Malta, 2010.

[10] F. Morbini, K. Audhkhasi, R. Artstein, M. Van Seg-
broeck, K. Sagae, P. Georgiou, D. Traum, and
S. Narayanan, “A reranking approach for recognition
and classification of speech input in conversational di-
alogue systems,” in Proc. of the SLT, Miami, Florida,
USA, 2012.

[11] F. Morbini, K. Audhkhasi, K. Sagae, R. Artstein,
D. Can, P. Georgiou, S. Narayanan, A. Leuski, and
D. Traum, “Which ASR should I choose for my dia-
logue system?,” in Proc. of the SIGDIAL, Metz, France,
2013.

[12] Baden-Wuerttemberg Cooperative State Univer-
sity, Stuttgart, Germany, OASIS—Open-Source
Automatic Speech Recognition In Smart Devices,
2014, http://www.dhbw-stuttgart.
de/themen/kooperative-forschung/
fakultaet-technik/oasis.html.

[13] F. Schiel, Verbmobil I - VM1, Bavarian Archive
for Speech Signals, Munich, Germany, 2012,
http://www.phonetik.uni-muenchen.
de/Bas/BasVM1eng.html.

[14] Linguistic Data Consortium, Philadelphia, USA, CSR-
II (WSJ1) Complete, 1994, http://catalog.ldc.
upenn.edu/LDC94S13A.

[15] C. Gaida, “Kaldi on Android demo,” http://
youtu.be/7etFg-vsSZI, 2014.


