
Large-Scale Experiments on Data-Driven Design of

Commercial Spoken Dialog Systems

D. Suendermann, J. Liscombe, J. Bloom, G. Li, R. Pieraccini

SpeechCycle Labs
New York City, USA

{david,jackson,jonathanb,grace,roberto}@speechcycle.com

Figure 1: General diagram of a spoken dialog system

Abstract

The design of commercial spoken dialog systems is most com-
monly based on hand-crafting call flows. Voice interaction
designers write prompts, predict caller responses, set speech
recognition parameters, implement interaction strategies, all
based on “best design practices”. Recently, we presented the
mathematical framework “Contender” (similar to reinforcement
learning) that allows for replacing manual decisions made dur-
ing system design by data-driven soft decisions made at system
run time optimizing the cumulative reward of an application.
The current paper reports on the results of 26 Contenders imple-
mented in commercial applications processing a total of about
15 million calls.
Index Terms: Contender, (commercial) spoken dialog systems,
optimization, data-driven design

1. Introduction

A spoken dialog system generally consists of five main compo-
nents (see Figure 1, [1]):

• speech recognition (ASR),

• spoken language understanding (SLU),

• dialog manager,

• language generation, and

• speech generation (text-to-speech synthesis, TTS).

While ASR and SLU on the one hand and language genera-
tion and TTS on the other hand serve as the interfaces between
human and machine, the dialog manager can be regarded as the
“brain” of the machine. It hosts system logic and knowledge, in-
tegrates with external knowledge bases and is able to perform a
wide spectrum of activities, run programs, send e-mails, initiate
call-backs, measure signal strength, and reboot devices to name
only a few. For over two decades, dialog management has been
the focus of large research endeavors such as in the ATIS [2] and
Communicator [3, 4, 5] projects. Being so used to the statisti-
cal framework from the community’s ground-breaking work on
speech recognition [6] and understanding [7], a natural exten-
sion was to equally treat the design of the dialog as a statistical

optimization problem. This was first done by [8] that modeled
dialog management as a Markov decision process whose model
parameters can be learned by optimizing a reward function on
processed live calls. A good number of modifications to this ap-
proach were proposed in the following years, most notably the
partially observable Markov decison processes [9].

Admittedly, statistical approaches to dialog management
are very appealing to the statisticians, mathematicians, engi-
neers, and computer scientists in the community since they
promise to learn automatically, adapt to environmental changes,
and are to serve as another milestone in artifical intelligence re-
search. However, as it stands, purely statistical dialog manage-
ment has not been used in commercial applications for a number
of reasons including:

• Learning directly from live calls is almost impossible
since the system is bound to fail numerous times before
learning a reasonable strategy by trial and error.

• The introduction of a user simulator [10] that navigates
the dialog system instead of a human caller improves the
performance of the first live call but brings up the ques-
tion on how to build a user simulator. Paradoxically, a
proper user simulator is either a rule-based dialog man-
ager interacting with the statistical dialog manager or
some model derived from live call statistics of a simi-
lar system. This approach requires heavy manual labor
or a pre-existing dialog system, respectively.

• The beautiful mathematical framework around dia-
log management suffers from an immense parameter
space rendering the involved computational processes in-
tractable. Several levels of simplifying assumptions have
to be made to bring the process in motion, examples
are [11] or [12].

• Last but not least, spoken dialog systems based purely on
statistics have not been deployed as live applications but
are almost exclusively run in test environments (with the
exception of some participants in the Spoken Dialogue
Challenge [13]).

To build spoken dialog systems robust enough to be applica-
ble to commercial deployments, about a decade ago, several
speech technology vendors standardized a framework by which
a voice browser is used as the interface between the standard
components of a dialog system. As communication protocol be-
tween dialog manager and voice browser, the consortium spec-
ified VoiceXML [14], a language that controls which prompts
to play, which language recognition and understanding models
to invoke, and how to navigate between call states. VoiceXML
made way to a straightforward paradigm of building spoken di-
alog systems in a systematic manual manner. Similar to hand-
crafting a decision tree, a call flow starts with a root activity that
can, for instance, present an initial prompt to the caller. Depen-
dening on which caller responses can be output by the SLU, a
number of conditional transitions exit the root activity leading
to other activities which do certain things before, again, exiting
with a number of transitions. And so on and so forth. Generally,
a call flow is a finite state machine whose nodes are activities
and whose arcs are conditions.



The introduction of WYSIWYG tools for the generation of
call flows through graphical interfaces also came with mecha-
nisms for directly producing VoiceXML code from the graph-
ical call flow representation. More advanced techniques pro-
duce code that is run on web servers generating VoiceXML code
dynamically during application run time [15]. These tools en-
able quick bootstrapping of new applications. Call flows can
be organized in hierarchical levels of arbitrary depth thereby
allowing for highly complex applications (e.g., an Internet trou-
bleshooting application similar to [16] built by the authors
involves over 2000 activities invoking more than 10000 pre-
recorded system prompts and almost 1000 distinct language
models and semantic classifiers).

Naturally, rapidly prototyping, building, and maintaining
spoken dialog systems of this scale in a manual fashion will
hardly result in optimal performance since designers mostly
rely on their own experience or that of experts from the field or
on heterogenious knowledge sources (analysis results from sim-
ilar applications, psychology research, inference). Often, call
flow portions are implemented in an ad-hoc fashion because de-
signers know that there is no prior knowledge available for the
specific topic they are working on. Answers to

• how to exactly phrase a prompt;

• whether to use an open-ended prompt, directed dialog,
or a yes/no question;

• in which order questions are asked and backend queries
and actions are performed;

• how to set activity parameters such as rejection and con-
firmation thresholds, sensitivity, time-out;

• when to escalate a caller to a human operator; etc.

are most often unknown, and, consequently, decisions are made
according to the designer’s gut feeling.

In a recent publication [17], we presented a technique (Con-
tender) that is to overcome some of the guesswork that comes
with designing speech applications by evaluating the perfor-
mance of alternative designs on production data. Instead of
settling on a single design for a given scenario, now, designers
brainstorm to come up with a number of reasonable alternatives
and implement all of them in the call flow1. At run time, a Con-
tender activity will randomly decide which alternative to take.
The random decision can be based on a set of randomization
weights that make sure that, on average, a predefined amount of
call traffic is routed to a given alternative. The purpose of this
weighting is

• to allow for optimizing the cumulative performance of
the application2,

• to allow a certain alternative to be preferred right at the
beginning of the experiment since it is expected to out-
perform the others, and

• to keep exploring the performance of an alternative even
when it has been found to underperform (since, some-
times, the performance of alternatives can considerably
change after certain events [18]).

Being a technique similar to what the academic community
refers to as reinforcement learning (that is used by the afore-
mentioned Markov decision processes), Contender is trying to
bridge the gap between the academic and industrial approaches

1This means that, after all, “best practices”, design experience, and
the actual act of human design of speech applications are still crucial.
Human intelligence is still necessary to come up with effective design
ideas. Evaluating their effectiveness is the machine’s task.

2In [17] we showed that adjusting the alternatives’ weights to reflect
their respective probability of being the winner results in a higher cumu-
lative performance than waiting until a statistically significant winner
has been found.

to building spoken dialog systems. While we laid out mathe-
matical foundations of the Contender technique in [17] and re-
ported on preliminary experimental results in [18], the present
paper is to report on observations drawn from large-scale im-
plementations of 26 Contenders in 10 commercial spoken di-
alog systems that processed about 15 million calls. Section 2
will give a brief overview of the Contenders and systems eval-
uated in this research. Data facts, results, and conclusions will
be drawn in Section 3.

2. Systems and Contenders

This section briefly describes dialog systems and Contenders
analyzed in the present research. All the considered systems
provide either technical support or FAQs for customers of cable
companies. Some of the Contenders were implemented in ap-
plications of different customers. Since the behavior of a Con-
tender can differ considerably depending on the specific cus-
tomer (as examplified in Section 3), in this paper, we distinguish
results by customer ID (A through E).

2.1. Cable TV troubleshooting

The cable TV troubleshooting application helps callers to re-
solve problems related to missing or bad picture, audio quality,
remote control, channel guide, and can also refresh cable boxes.

C1. Cable box reboot order (Customers A, B)

a The system performs an automated reboot. If it
fails, callers are asked whether they feel comfort-
able performing a manual reboot. If the response
is ‘no’ they get escalated to a human agent.

b Callers are asked whether they feel comfortable
doing a manual reboot. If they respond ‘no’, an
automated reboot is performed.

C2. Cable box unplugging instructions (Customer A)

a Callers are asked to unplug their cable from the
back of the box.

b Callers are asked to unplug their cable from the
back of the box or, alternatively, from the wall.

C3. Problem capture (Customer A)

a Please tell me the problem you are having in a
short sentence.

b Are you calling because you lost some or all of
your cable TV service? followed by a) if the an-
swer was ‘no’.

c a) + or you can say ‘what are my choices’ followed
by a back-up menu if the answer was ‘choices’.

d b) followed by c) if the answer was ‘no’.

C4. Input source troubleshooting (Customer B)

a Perform a box reboot. If it fails let the caller check
whether the input source on their television is cor-
rectly set.

b First check for the correct input source. If it fails,
perform a reboot.

C5. Outage prediction when caller has no picture (Provi-
der B)

a Ask whether the problem is happening on all of the
caller’s multiple TVs. If the answer is ‘yes’ the
system assumes there is an outage and escalates
the call to a human agent. Otherwise, perform a
box reboot.

b Perform a box reboot.

C6. Phrasing of opt-in prompt (Customer C)

a To begin troubleshooting with me, say ‘let’s start
now’. [2 sec pause] Otherwise, you can say ‘rep-
resentative’.

b To get started, say ‘continue’. [2 sec pause] If at
anytime you’d like to troubleshoot with a customer
service representative, just say ‘agent’.



2.2. Internet troubleshooting

The Internet troubleshooting application addresses lost, slow, or
intermittent Internet connections, e-mail issues, parental control
settings, etc., and can also fix a missing dial tone on a Voice-
over-IP phone.

C7. Order of lost Internet troubleshooting steps (Customers
A, D)

a Reboot modem, router, and computer. Then check
whether the caller’s Internet came back.

b Reboot modem. Then check for success. If unsuc-
cessful, reboot router and computer and then check
again.

c First check the modem light pattern. Only when
the pattern suggests that a reboot would resolve the
problem, reboot, otherwise, escalate the call to a
human agent.

C8. Order of troubleshooting steps, no lights (Customers A,
D, E)

The same as C7 but without Alternative c—for
modems whose light patterns we are not yet re-
searching.

C9. No-dial-tone troubleshooting of Internet modem (Provi-
der D)

a Reboot the modem.
b First check the modem light pattern. Only when

the pattern suggests that a reboot would resolve the
problem, reboot, otherwise, escalate the call to a
human agent.

C10. Account lookup (Customer D)

a When the system knows the caller ID, it plays the
message one moment while I look up your account
information and then performs an account lookup
before it goes into troubleshooting. If the caller
ID is unknown, account lookup and message are
skipped.

b The system plays the message regardless of
whether the caller ID is known and regardless of
whether an account lookup is actually going to oc-
cur.

C11. Computer reboot instructions (Customers A, C, D, E)

a While your modem’s getting a fresh signal, we
need to shut down the main part of your computer;
you can leave your monitor on.

b While your modem’s getting a fresh signal, we
need to shut down your computer.

C12. Operating system capture (Customers A, B, C, D, E)

a Are you running Windows or Macintosh?
b Are you running Windows?

2.3. Voice-over-IP FAQ

Our Voice-over-IP application answers questions about phone
features such as voice mail, caller ID, call blocking, conference
calls, and call forwarding.

C13. Call reason capture (Customer D)

a Briefly tell me what you’re calling about today.
b There are quite a few things I can help you with.

To start, just say ‘voicemail’ or ‘calling features’.
Or you can say ‘help me with something else’.

C14. Caller ID disambiguation (Customer C)

a Do you want to block your ID or see who’s call-
ing? [pause] You can also say ‘help me with some-
thing else’.

b If you want to block your ID so people can’t see
that it’s you calling, say ‘block my ID’. If you
want to know who’s calling before you pick up the
phone, say ‘see who’s calling’.

3. Data, Results, and Conclusions

In order to be able to measure the performance of a spoken di-
alog system processing millions of calls, one has to settle on a
performance metric that can be derived directly from the sys-
tem logs. As motivated in [18], in this paper, we will be using
a reward function that is a linar combination of automation rate
(A) and handling time (T ):

R = A −
T

TA

(1)

with a trade-off parameter of TA = 5000s. To facilitate inter-
pretation of the experimental results displayed in Table 1, we
include the following additional statistics:

• time. This is the number of days the Contender was in
production at the time the paper was submitted.

• nTotal. The number of calls processed by the application
featuring the respective Contender.

• nContender. The number of calls processed by the re-
spective Contender (depending on which part of the call
flow the Contender is located in, this number is some-
where between 0 and nTotal).

• p. The probability that an Alternative is the winner based
on the data collected in the course of the experiment.
This probability is estimated based on the principles ex-
plained in [17]. In Table 1, R and p are displayed for the
Contender Alternatives a, b, etc. in the form

(Ra, Rb, . . .) and (pa, pb, . . .). (2)

In the table, performance values of alternatives that were found
to be statistically significantly different from competing alter-
natives are identified by printing their winning probabilities p
in bold. We consider a result statistically significant when p
approaches either 0 or 1 with a significance level of 0.05. This
means that if a Contender has two alternatives, both, pa and pb

will be found either significant or not. When there are more
than two alternatives, however, it is possible that the probabili-
ties of some alternatives are found to be significant while others
are not. E.g., Alternative c of C7A was found to significantly
underperform while the contention between Alternatives a and
b is not decided yet.

Whether alternatives are found to be statistically significant
winners or losers depends on the observed performance differ-
ences and on the amount of data collected. E.g., C6 features
a clear winner (Alternative b) even though its performance is
only slightly higher than Alternative a (0.170 vs. 0.174), how-
ever, the sheer amount of data analyzed (almost 1.7 millon calls)
showed the result to be significant nonetheless. Also C12D has
a clear winner (Alternative b) although only 1343 calls hit the
Contender. Here, the performance difference was found to be
substantial (0.150 vs. 0.214).

In contrast to our very first step towards implementing Con-
tenders in commercial spoken dialog systems [18], the present
work attempted to evaluate the effect of population-specific
Contenders by rolling out the same Contender to different cus-
tomers and treating them as separate experiments. For example,
C1 has shown significant results for Customer A while there is
only a marginal performance difference for Customer B. In the
case of C12, almost all customers (marginally) tend to Alter-
native a (A, B, C, and E), however, the only significant result
is that of Customer D which clearly finds Alternative b to be
the winner. Even more interesting, for C11, all participating
customers (A, C, D, E) (marginally) tend towards Alternative a.
When we now take the data collected for Customer A and limit
the analysis to only one of the 16 call centers the customer oper-
ates, we find that, for this specific caller population, Alternative
b significantly outperforms a (C11A’).



Contender Customer time [d] nTotal nContender R p

C1 A 376 644, 819 281, 897 (44%) (0.117, 0.110) (1, 0)
B 153 613, 007 240, 380 (39%) (0.274, 0.273) (0.74, 0.26)

C2 A 376 644, 819 89, 451 (14%) (0.229, 0.230) (0.40, 0.60)

C3 A 376 644, 819 615, 162 (95%) (0.057, 0.062, 0.054, 0.057) (0, 1, 0, 0)

C4 B 134 657, 535 71, 015 (11%) (0.331, 0.332) (0.48, 0.52)

C5 B 153 613, 007 76, 634 (13%) (0.159, 0.309) (0, 1)

C6 C 255 2, 927, 289 1, 684, 134 (58%) (0.170, 0.174) (0, 1)

C7 A 287 2, 302, 878 193, 589 (8%) (0.275, 0.279, 0.250) (0.37, 0.63, 0)
D 267 1, 176, 073 126, 714 (11%) (0.234, 0.238, 0.194) (0.33, 0.67, 0)

C8 A 30 229, 421 12, 828 (6%) (0.251, 0.261) (0.11, 0.89)
D 126 1, 053, 522 45, 873 (5%) (0.310, 0.313) (0.30, 0.70)
E 224 81, 784 42, 606 (52%) (0.352, 0.389) (0.08, 0.92)

C9 D 255 1, 176, 073 26, 316 (2%) (0.267, 0.204) (1, 0)

C10 D 126 526, 761 88, 650 (17%) (0.158, 0.164) (0.01, 0.99)

C11 A 30 229, 421 24, 654 (11%) (0.415, 0.406) (0.86, 0.14)
A’ 30 23, 807 2, 306 (10%) (0.407, 0.452) (0.05, 0.95)
C 15 193, 037 47, 967 (25%) (0.212, 0.207) (0.92, 0.08)
D 23 69, 058 13, 416 (19%) (0.406, 0.395) (0.90, 0.10)
E 20 4, 407 1, 302 (30%) (0.389, 0.374) (0.71, 0.29)

C12 A 30 229, 421 6, 384 (3%) (0.136, 0.130) (0.69, 0.31)
B 90 90, 070 3, 920 (4%) (0.035, 0.028) (0.69, 0.31)
C 15 193, 037 5, 781 (3%) (0.042, 0.025) (0.94, 0.06)
D 23 69, 058 1, 343 (2%) (0.150, 0.214) (0.01, 0.99)
E 20 4, 407 283 (6%) (0.075, 0.070) (0.54, 0.46)

C13 D 365 100, 815 83, 711 (83%) (0.193, 0.237) (0.02, 0.98)

C14 C 15 4, 958 210 (4%) (0.037, 0.024) (0.67, 0.33)

Table 1: Contender statistics.

The observation that results of Contender experimentation
seem to (sometimes) depend on certain external parameters (in
our case we showed that one such parameter is the caller pop-
ulation) motivates us to perform deeper analysis into which pa-
rameters (time of the day, day of the week, call reason, caller ex-
pertise, etc.) influence optimal decisions of Contenders. When
decisions will be made at run time depending on the specific
parameter situation of the call, the notions of “Contender” and
“data-driven design” become fuzzy. The original intention of
introducing Contenders was to help designers make optimal de-
cisions rather than to rely on best practices or gut feeling. Going
forward, designers will have to accept that, often, there will not
be clear answers of the type “b is the winner” anymore, but un-
satisfying statements such as “b is the winner unless it is for
Customer A or D or for Customer B’s Call Center 13, however,
only when it is a weekend and the callers are from Area Code
212 and have not called already during the last 48 hours ...”.

4. References

[1] W. Minker and S. Bennacef, Speech and Human-Machine Dialog.
New York, USA: Springer, 2004.

[2] C. Hemphill, J. Godfrey, and G. Doddington, “The ATIS Spoken
Language Systems Pilot Corpus,” in Proc. of the Workshop on

Speech and Natural Language, Hidden Valley, USA, 1990.
[3] A. Rudnicky, E. Thayer, F. Constantinides, C. Tchou, R. Sh-

ern, K. Lenzo, W. Xu, and A. Oh, “Creating Natural Dialogs in
the Carnegie Mellon Communicator System,” in Proc. of the Eu-

rospeech, Budapest, Hungary, 1999.
[4] A. Potamianos, E. Ammicht, and J. Kuo, “Dialogue Management

in the Bell Labs Communicator System,” in Proc. of the ICSLP,
Beijing, China, 2000.

[5] M. Walker, J. Aberdeen, and G. Sanders, 2001 Communicator

Evaluation. Philadelphia, USA: Linguistic Data Consortium,
2003.

[6] L. Rabiner and R. Schafer, Digital Processing of Speech Signals.
Englewood Cliffs, USA: Prentice Hall, 1978.

[7] D. Klatt, “Review of the DARPA Speech Understanding Project,”
Journal of the Acoustical Society of America, vol. 62, no. 4, 1977.

[8] E. Levin and R. Pieraccini, “A Stochastic Model of Computer-
Human Interaction for Learning Dialogue Strategies,” in Proc. of

the Eurospeech, Rhodes, Greece, 1997.
[9] S. Young, “Using POMDPs for Dialog Management,” in Proc. of

the SLT, Palm Beach, Aruba, 2006.
[10] K. Scheffler and S. Young, “Automatic Learning of Dialogue

Strategy Using Dialogue Simulation and Reinforcement Learn-
ing,” in Proc. of the HLT, San Diego, USA, 2002.

[11] S. Young, J. Schatzmann, K. Weilhammer, and H. Ye, “The Hid-
den Information State Approach to Dialog Management,” in Proc.

of the ICASSP, Hawaii, USA, 2007.
[12] J. Williams, “Incremental Partition Recombination for Efficient

Tracking of Multiple Dialog States,” in Proc. of the ICASSP, Dal-
las, USA, 2010.

[13] A. Black and M. Eskenazi, “The Spoken Dialogue Challenge,” in
Proc. of the SIGdial Workshop on Discourse and Dialogue, Lon-
don, UK, 2009.

[14] S. McGlashan, D. Burnett, J. Carter, P. Danielsen, J. Ferrans,
A. Hunt, B. Lucas, B. Porter, K. Rehor, and S. Tryphonas,
“VoiceXML 2.0. W3C Recommendation,” http://

www.w3.org/TR/2004/REC-voicexml20-20040316, 2004.
[15] R. Pieraccini and D. Suendermann, “Experiments in automatic

grammar localization of commercial spoken dialog systems,” in
Multilingual Natural Language Applications: From Theory to

Practice, D. Bikel and I. Zitouni, Eds. Upper Saddle River, USA:
Prentice Hall, 2011.

[16] K. Acomb, J. Bloom, K. Dayanidhi, P. Hunter, P. Krogh, E. Levin,
and R. Pieraccini, “Technical Support Dialog Systems: Issues,
Problems, and Solutions,” in Proc. of the HLT-NAACL, Rochester,
USA, 2007.

[17] D. Suendermann and J. Liscombe and R. Pieraccini, “Contender,”
in Proc. of the SLT, Berkeley, USA, 2010.

[18] D. Suendermann and J. Liscombe and J. Bloom and G. Li and R.
Pieraccini, “Deploying Contender: Early Lessons in Data, Mea-
surement, and Testing of Multiple Call Flow Decisions,” in Proc.
of the HCI, Washington, USA, 2011.


