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Abstract

In this paper, we propose a semi-supervised cluster-and-label al-
gorithm for utterance classification. The approach assumesthat
the underlying class distribution is roughly captured through–
fully unsupervised–clustering. Then, a minimum number of
labeled examples is used to automatically label the extracted
clusters so that the initial label set is ”augmented” to the whole
clustered data. The optimum cluster labeling is achieved by
means of the Hungarian algorithm, traditionally used to solve
optimization assignment problems. Finally, the augmentedla-
beled set is applied to train an SVM classifier. We compare this
semi-supervised approach to a fully supervised version in which
the initial labeled sets are directly used to train the SVM model.

1. Introduction
In this paper, we propose a semi-supervised algorithm applied
to the classification of transcribed utterances. We apply this
algorithm to the natural language problem capture of trou-
bleshooting dialog system. These systems automatically re-
solve customer care issues over the phone in a similar way as
human agents do [1]. One important characteristic of these sys-
tems is the natural language modality of interaction with the
user. The users are allowed to describe the experienced prob-
lem with their own words, and it is the system’s task to analyze
the utterance and classify it into the most probable symptom
category. In commercial state-of-the-art implementations, the
symptom classification task is performed by supervised clas-
sifiers. However, a significant limitation of supervised tech-
niques is the requirement of labeled corpora of considerable
dimensions in order to achieve accurate predictions. Numer-
ous studies have shown how knowledge learned from unlabeled
data can dramatically reduce the size of labeled data required
to achieve appropriate classification performances [2]. Semi-
supervised classification is a framework of algorithms proposed
to improve the performance of supervised algorithms through
the use of both labeled and unlabeled data.

In literature, several approaches to semi-supervised clas-
sification have been proposed, including, co-training [3],self-
training [4] or generative models [2]. This paper focuses on
a particular case of generative models in which cluster algo-
rithms are employed instead of probabilistic mixture models.
This kind of approaches is commonly referred to as “cluster-
and-label” [5]. The algorithm proposed in this paper differs
from previous work that mostly includes both clustering and
labeling in a single optimisation problem. Commonly, the la-
beled seeds have been often used to initialize or guide the clus-
tering algorithms in such a way that the clusters’ patterns are

implicitely tagged during the clustering process. In this work,
however, the clustering and labeling tasks are separated into two
independent processes. First, a cluster partition of the data set
is produced by a fully unsupervised clustering algorithm. Then,
given a small set of labels (also referred to as prototype of la-
beled seed), a cost matrix is computed based on the distribution
of labels throughout the clusters. The cluster labeling objective
is then formulated as an assignment problem that is solved us-
ing the Hungarian algorithm [6]. Thereby, an optimum cluster
labelinggiven the labeled seedsis ensured.

An extension of the proposed semi-supervised approach is
also presented, using a cluster-pruning algorithm which isin-
tended to improve the quality of the clusters by pruning such
patterns with high probability of belonging to an overlapping
region between classes.

The paper is organized as follows: In Section 2, we outline
the proposed semi-supervised algorithm. One important task of
the new algorithm is the optimum cluster labeling which is ex-
plained in more detail in Section 3. In Section 4, we propose an
extension to the semi-supervised algorithm described in Section
2. Experimental results are discussed in Section 5. Finally, we
draw conclusions and propose future directions in Section 6.

2. The new semi-supervised algorithm
As outlined in the introduction, in previous work, the labeled
seeds have been often used to initialize or guide the clustering
algorithms integrating the labeling task into the clustering pro-
cess. In other words, the clusters’ patterns are simultaneously
tagged during the clustering process.

In consequence, the initial labeled sets may influence, to a
certain degree, the quality of the discovered clusters, especially
if the labeled sets are not exempt from labeling errors.

In the proposed method, clustering and labeling is sepa-
rated into two independent tasks. Essentially, the data set(both
labeled and unlabeled patterns) is first clustered,without anya
priori information concerning labels. Thereby, a fully unsuper-
vised, data-driven solution is enforced. Then, the distribution of
labels through the different clusters is taken into consideration,
in order to achieve an optimum labeling of the clusters’ patterns.

Data set:First, the data set is divided into test and training
subsets. Let

XT = {x1, x2, · · · , xp}, ∀xi ∈ RN .

denote the training data points. This set is in turn divided
into two disjoint subsets:



XT = X
(l)
T ∪ X

(u)
T

denotingX (l)
T the labeled portion ofXT for which the cor-

responding set of labelsYl
T is assumed to be known, andX (u)

T ,
the subset of unlabeled patterns inXT .

Clustering: The first step of the semi-supervised approach
is to find a cluster partitionC of the training dataXT into a
set of k disjoint clustersC = {C1, C2, . . . , Ck} wherek is
the number of classes (which is assumed to be known from
the labeled set). In this work, we use the Partitioning around
Medoids (Pam) algorithm in conjunction with two different
distance functions to compute the matrix of dissimilarities be-
tween utterances: the cosine distance and the overlap distance.
The overlap similarity between two utterances is the number
of words that both utterances have in common. If utterances
are represented as binary vectors of term occurrences (see Sec-
tion 5), the overlap similarity corresponds to the dot product
between utterance vectors. The overlap distance is then defined
asM − overlap similarity, whereM is the maximum of the
similarity matrix.

Optimum Cluster Labeling:The labeling block performs a
crucial task in the semi-supervised algorithm. Given the set of
clustersC in which the training data is divided, the objective of
this block is to find an optimum bijective mapping of labels to
clusters:

L : C → K, K = {1, 2, 3, · · · , k}

so that an optimum criterion is fulfilled. Each cluster is as-
signed exactly one class label inK. This mapping of clusters to
class labels is equivalent to a mapping function that assigns the
class label of the cluster where it belongs to each cluster mem-
ber. As a result of the cluster labeling, the initial labeledseed
(X

(l)
T ,Y

(l)
T ) is extended to the complete training set(XT ,YT ),

denotingYT , the set of augmented labels corresponding to the
observations inXT

ClassificationFinally, a Support Vector Machine (SVM)
classifier [7] is trained with the augmented labeled set(XT ,YT )
obtained after cluster labeling. The SVM model is then applied
to predict the labels for the test set.

Simultaneously, we compared a fully supervised classifica-
tion technique to the semi-supervised algorithm. In this case,
we trained the SVM directly with the initial labeled seed (X (l),
Y(l)).

3. Optimum cluster labeling

Given the training data,XT = X
(l)
T ∪ X

(u)
T , the setY(l)

T of

labels associated with the portionX (l)
T of the training set,

the setK of labels for thek existing classes1, and a cluster
partition C of XT into disjoint clusters, the optimum cluster
labeling problem is to find a bijective mapping function

L : C → K, K = {1, 2, 3, · · · , k}

1Although class labels can take an arbitrary value, numeric or nom-
inal, for the sake of simplicity we transformed thek class labels to inte-
ger values ([1 . . . k]).

that assigns each cluster inC to a class label inK, while
minimizing the total labeling cost. This cost is defined in terms
of the labeled seed (X (l)

T ,Y
(l)
T ) and the set of clustersC. Con-

sider the following matrix of overlapping productsN :
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0

B

B

B
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with constituentsnij , denoting the number of labeled pat-
terns fromX

(l)
T with class labely = i that fall into clusterCj .

The labeling objective is to minimize the global cost of the clus-
ter labeling denoted by L:

Total Cost(L) =
X

Ci∈C

wi · Cost
`

L(Ci)
´

(1)

whereW = (w1, · · · , wk) is a vector of weights for the
different clusters. For example, it may be used if cluster sizes
show significant differences among the clusters. In this paper,
the weights are assumed to be equal for all clusters, so thatwi =
1, ∀i ∈ 1 · · · k.
The individual cost of labeling a clusterCi with classL(Ci)
is defined as the number of samples from classL(Ci) (in the
labeled seed) that fall outside the clusterCi, i.e.:

Cost
`

L(Ci)
´

=
X

Ck 6=Ci

nL(Ci),k. (2)

Applying Equation 2 to the total cost definition of Equation
1 yields:

Total Cost(L) =
X

Ci∈C

X

Ck 6=Ci

nL(Ci),k (3)

In this paper, we applied the Hungarian algorithm to
achieve the optimum cluster labeling in Equation 3. It requires
the definition of a cost matrixC[kxk] whose rows denote the
clusters and the columns refer to class labels inK. The ele-
mentsCij denote the individual costs of assigning the cluster
Ci to class labelj, i.e. Cij = Cost(L(Ci) = j). The reader is
referred to [6] for further details about the assignment problem
and the Hungarian algorithm.

4. Extension through cluster pruning
Even though the underlying class structure can be appropriately
captured by a cluster algorithm, the augmented data set derived
by the optimum cluster labeling may contain a number of “mis-
classification”2 errors with respect to the real class labels. This
happens especially when two or more of the underlying classes
show a certain overlap of patterns. In this case, the errors may
be accumulated in the regions close to the cluster boundaries of
adjacent clusters.

The general idea behind the proposed optimization method
is to improve the (external) cluster quality by identifyingand re-
moving such regions with high probability of misclassification
errors from the clusters. To this aim, we apply the concept of
pattern silhouettesto prune the clusters inC.

2Here, the term missclassification is not used to indicate thepre-
dicted errors of the end classifiers but the errors after the cluster label-
ing block. Note that, after cluster labeling, each clustered data pattern
is assigned a class label (the label of its cluster) which canbe compared
to the real label if the complete labeled set is available.



The silhouette width of an observationxi is an internal
measure of quality, typically used as the first step of the compu-
tation of the average silhouette width of a cluster partition [8].
It is formulated as:

s(xi) =
b(xi) − a(xi)

max(a(xi), b(xi))
(4)

wherea is the average distance betweenxi and the ele-
ments in its own cluster, whileb is the smallest average distance
betweenxi and other clusters in the partition. Intuitively, the
silhouette of an objects(xi) can be thought of as the “confi-
dence” with which the clustering algorithm has assigned pattern
xi to clusterC(xi). Higher silhouette scores are observed for
patterns clustered with a higher “confidence”, while low val-
ues indicate patterns which lie between clusters or are probably
allocated in the wrong cluster.

The cluster pruning approach can be mainly described with
the following steps:

1. Given a cluster partitionC and the matrix of dissimi-
larities between the patterns in the data set,D, calculate the
silhouette of each object in the data set.

2. Sort the elements in each cluster according to their sil-
houette scores, in increasing order.

3. The observations in each cluster with lower silhouette
scores may belong to a class-overlapping region with higher
probabilities. Using the histograms of silhouette scores within
the clusters, select a minimum silhouette threshold for each
cluster.

4. Prune each clusterCi in C by removing patterns which
do not exceed the minimum silhouette threshold for the cluster,
chosen in the previous step.

As aforementioned, the selection of silhouette thresholds
are determined according to the histograms of silhouette values
in each cluster. In this work, we estimate the distribution of sil-
houette values by using the histogram function in the software R
which also provides the vectors of silhouette values found as the
histogram bin limits and the counts of occurrences in each bin
3. In practice, silhouette thresholds are selected to coincide with
histogram bin limits. We set the selected number of histogram
bins corresponding to rejected patterns to the largest possible
satisfying the following conditions:

1. the upper limit of the last rejected bin should not be
greater thansilth = 0.5, and

2. the amount of rejected patterns (total number of occur-
rences in the rejected bins) should not exceed1/3 of the
total number of patterns in the cluster.

5. Evaluation and results
The supervised and semi-supervised methods described in the
previous section have been applied to a data set of transcribed
utterances collected from user calls to commercial troubleshoot-
ing dialog systems.

Utterance preprocessingFirst, we preprocessed the utter-
ance corpus using morphological analysis and stop word re-
moval. The morphological analyzer [10] was applied to reduce
the surface forms of words into their word lemmas. The lemma-
tized words were filtered using the SMART stop word list with
small modifications. In particular, confirmation words (yes, no)
were deleted from the stop word list, while some terms typical

3The bin sizes provided by the R’s histogram function are estimated
according to the Sturges formula [9]

Removed
Distance patterns NMI 1 NMI 2 Error 1 Error 2
Overlap 31.94% 0.269 0.64 20.48% 6.63 %
Cosine 32.29% 0.100 0.297 36.11 % 21.02 %

Table 1: Normalized Mutual Information (NMI) before and af-
ter cluster pruning (referred to as NMI 1 and NMI 2). Misclassi-
fication errors before and after cluster pruning are denotedError
1 and Error 2.

for spontaneous speech (eh, ehm, uh, . . . ) were added. Fi-
nally, we retained the lemmas with two or more occurrences in
the preprocessed corpus, resulting in a vocabulary dimension of
554 word lemmas, also referred to asindex termsin the follow-
ing. After removing duplicate vectors, the final data set con-
sisted of 2940 unique utterance vectors. From a total numberof
79 symptoms, the following preliminary experiments used only
the two most frequent symptoms in the training set (comprising
288 unique instances of utterance vectors). That means, we are
speaking of a binary classification task.

In addition, we prepared an independent test set comprising
a total number of 10000 transcribed utterances using the same
steps as described above. From this set, we randomly selected a
number of utterances (∼ 10% of the training set size) as the test
set applied to the classifiers. In order to avoid possible biases of
a single test set, we generated 20 different test partitions. From
the the training set, we also selected 20 different random seeds
of labeled prototypes (n labels /category).

First, we evaluated the performance of the cluster pruning
approach by computing the external cluster quality before and
after cluster pruning (in terms of misclassification error rates
and Normalized Mutual Information (NMI) [11] between the
cluster partition and the reference labels. These scores can be
observed in Table 1. While the pruned sections comprise around
30% of the total number of patterns in the data sets, the percent-
age of remaining misclassification errors has been substantially
reduced from20.48% to 6.63% in the clusters obtained with
overlap distances and from36.11% to 21.02% with cosine dis-
similarities.

5.1. Results

For both supervised and semi-supervised SVM classifiers, we
measured classification accuracy. The results are shown in Fig-
ures 1 and 2. Horizontal axes represent the sizes of the ini-
tial prototype seeds (from 1 to 5 labeled samples/class), vertical
axes represent the mean accuracy scores, averaged over 400 ex-
periments (20 test partitions x 20 prototype seeds).

The accuracy curves of the semi-supervised algorithm are
roughly constant or slowly increasing with the labeled set size.
In contrast, accuracy curves of the supervised approach show
stronger increments with the training set sizes. By using the
Pam algorithm with the cosine distance, the cluster qualityis not
sufficient to recover the underlying class structure, and thus, the
supervised approach outperforms the semi-supervised method
regardless of the labeled seed size. By applying the overlapdis-
tance (Figure 2), some improvements can be observed if clus-
ter pruning is used to enhance the cluster quality (in terms of
misclassification errors). In this case, the semi-supervised algo-
rithm achieves higher performance than the supervised classi-
fier under minimal labeled seeds (n = 1 or 2 samples/category).
For larger values ofn, the information in the increasing labeled
seeds compensates for misclassification errors in the augmented
sets, and thus, the supervised classifier outperforms againthe
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Figure 1: Accuracy with the supervised and semi-supervised
methods using the cosine distance.
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Figure 2: Accuracy with the supervised and semi-supervised
methods using the overlap distance.

semi-supervised approach.

6. Conclusions and future directions
In this paper, we presented a semi-supervised cluster-and-label
approach to classification of utterances has been presented. In
contrast to previous works in semi-supervised classification lit-
erature where labels are commonly integrated in the clustering
process, in this work, the cluster and labeling stages are inde-
pendent of each other. First, an unsupervised clustering algo-
rithm is used to obtain a cluster partition of the utterance train-
ing set. Then, the output cluster partition as well as a small
set of labeled prototypes (also referred to as labeled seeds) are
used to determine the optimum cluster labeling related to the
labeled seed. We formulated the cluster labeling problem as
an assignment optimization problem whose solution is obtained
by means of the Hungarian algorithm. In addition, we improved
the semi-supervised algorithm by discarding the patterns clus-
tered with small silhouette scores. Thereby, we were able to
demonstrate that the quality of the pruned clusters can be im-
proved. This is because the removal of small numbers of cluster
members can lead to significant reductions of missclassification
errors.

Our experimental results showed improvements of the
semi-supervised algorithm after cluster pruning for smallla-
beled data sets (n = 1 and 2 labels/class), by applying the Pam
clustering algorithm in conjunction with the overlap distance.

Future work is to analyze further alternatives for the defini-
tion of the cost matrix used by the Hungarian algorithm. For ex-
ample, a probabilistic definition of the cost matrix by estimating
class-cluster probabilities given the labeled seeds may help to
extend the proposed semi-supervised approach to a larger num-
ber of categories.

A further issue to be analysed is the choice of the number of
clustersk, to be larger than the number of predefined categories.
We believe such an strategy may provide better classification
performances - specially for larger numbers of categories -as
clusters can be more “specified” with members of one category
(lower cluster entropies).
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