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Abstract
Thede online prediction of task success in Interactive Voice

Response (IVR) systems is a comparatively new field of re-
search. It helps to identify problemantic calls and enables the
dialog system to react before the caller gets overly frustrated.
This publication investigates, to which extent it is possible to
predict task completion and how existing approaches generalize
for long dialogs. We compare the performance of two different
modeling techniques: linear modeling and n-gram modeling.
We show that n-gram modeling outperforms linear modeling
significantly at later prediction points. From a comprehensive
set of interaction parameters, we identify the relevant ones us-
ing the Information Gain Ratio. New interaction parameters are
presented and evaluated. The study is based on 41,422 calls
from an automated Internet troubleshooter with an average of
21.4 turns per call.
Index Terms: predicton, task completion, task success, inter-
action parameters, problematic dialogs

1. Introduction
Spoken dialog systems are used to replace human operators in
telephone conversations, most importantly to reduce handling
costs. If the system fails, a human operator usually takes over
the dialog system’s role driving the overall expense for this call
up. The expense of a non-automated call is the automated por-
tion’s handling fee plus the human operator’s fee. Both of them
directly depend on the respective handling time. Taking this
preamble into account, it seems obvious that calls that do not
have any potential to be automated by the dialog system should
be escalated to a human agent as soon as possible. Most sys-
tems deployed in the field use the number of misrecognitions,
time-out events, out-of-scope inputs, etc. to indicate how likely
the call is going to fail and escalate to a human operator once
this number exceeds a certain threshold. While the occurrence
of the mentioned events may have a considerable correlation
with the call outcome (i.e./ whether the call will be automated
or not), there are many other factors providing additional infor-
mation on the expected call outcome such as the current dialog
step the user is in, the duration of the call so far, the barge-in
behaviour etc.

Few recent studies started to tackle this problem by intro-
ducing statistical classifiers that take into account a variety of
parameters that characterize the ongoing interaction between
user and system. These studies are limited to dialog systems
with only a small number of turns. Newer generations of dia-
log systems, such as the one employed in this study, may handle
calls with more than 50 turns. In this study, we demonstrate that
state-of-the-art techniques perform well only for systems with
few turns. For more complex systems, the prediction accuracy

significantly decreases the further the call progresses.
An early prediction of task completion can have several

benefits for the dialog system and the user. If a task is unlikely
to be completed, the system can

• perform an early escalation to a human operator who will
solve the task.

• adapt the dialog strategy to prevent task failure, e.g.
introduce more direct confirmations or add domain-
dependent steps.

This paper is organized as follows: In Section 2, we con-
sider related work. In Section 3, we introduce linear and n-gram
model approaches to call outcome prediction. Next, we present
the corpus employed in this study in Section 4. Section 5 intro-
duces an enhanced set of interaction parameters which are sub-
ject to feature selection in Section 6. In Section 7, we compare
the linear with the n-gram approach. Results are summarized
and discussed in Section 8.

2. Related Work
Some of the first models to predict problematic dialogs in IVR
systems were proposed by Walker et al. [1]. They employ RIP-
PER, a rule-learning algorithm, to implement a Problematic Di-
alog Predictor forecasting the outcome of calls in the HMIHY
(How May I Help You) call routing system by AT&T. The clas-
sifier aims to determine whether a call belongs to the class prob-
lematic or not problematic1 and employs the classifier’s deci-
sion to escalate to a human operator. Due to the nature of
HMIHY, the dialogs are quite short with not more than 5 di-
alog turns. Walker et al. built one classification model based on
features extracted out of the first dialog exchange, and another
model based on features from the first and the second exchange.
The first model achieved an accuracy of 69.6% and the sec-
ond model of 80.3%, respectively. Walker et al. inspired further
studies on predicting problematic dialog situations: [2] com-
bined a classifier with various business models to arrive at a de-
cision to escalate a caller depending upon expected cost savings.
The target application is that of a technical support automated
agent. Again a RIPPER-like rule-learner has been used. In [3],
we presented an approach similar to [2] that demonstrates ex-
pected cost savings when using a problematic dialog predictor
for a technical support automated agent in the television trou-
bleshooting domain. Under the hypothesis that acoustic fea-
tures extracted from caller utterances support the detection of
problematic situations, we carried out a study that incorporated

1the term “problematic” in this context refers to calls where the task
is not completed, “non-problematic” calls end up with completing the
call



average pitch, loudness and intensity features within each dia-
log exchange [4]. [5] considered the influence of an agent queue
model on the call outcome and included the availability of hu-
man operators in the decision process. A rather simple yet quite
effective approach has been published by [6] where a call out-
come classifier achieves an accuracy of 83% after 5 turns.

3. Linear and N-Gram Models
Most past studies model the input feature vector as a combined
data vector of 1..n dialog turns (cf [1, 6, 3]). We will refer to
this kind of modeling as linear approach. The basic procedure
is depicted in Figure 1. Interaction parameters (cf. Section 5)
are derived from log information captured on the turn level.
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Figure 1: Linear modeling: Captured interaction parameters
P1.1.n derived from system-user exchanges (p (prompt) and r
(response)) are linearily aligned within the feature vector repre-
senting the dialog up to the current turn. For each turn, a specific
model is trained (cf. [1, 6, 3])

This procedure models the complete dialog history up to
the current turn. As aforementioned, the performance of this
approach suffers from data sparsity in later turns: State-of-the-
art dialog systems are based on call-flows adhering to a tree
structure. Consequently, there are many calls going through the
same initial activities while less and less calls reach the diverse
branches further down in the call-flow. I.e. the feature vector
for longer calls is not reliable anymore, and the classifier’s per-
formance drops.

For predicting task completion at a later point in time, we
propose the use of n-grams of interaction parameters on turn
level, see Figure 2.
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Figure 2: n-gram modeling: Only the last n turns are included
for predicting the task completion in the current turn. The
model depicted here is based on trigrams.

4. Corpus Description
For our study, we employed a corpus of 104,800 calls from an
automated Internet troubleshooter. It helps callers to get back
online, recover from e-mail problems, reset passwords, etc. The
largest portion of calls is the recovery of lost Internet connec-
tions. In the present study, we focus on this group comprising
41,422 calls altogether.

Each call was assigned one of the following three class la-
bels [7]:

• ’not solved’2: the problem can be considered as un-
solved either because the caller hung up in the middle
of the conversation, the user asked for an operator with-
out being offered one, or the system could not solve the
problem,

• ’partially solved’3: the problem was partially solved in
that the system provided significant hints to the user what
the problem was, but, finally, the Internet connectivity
was not recovered and the help of an operator was re-
quired,

• ’solved’4: the Internet connectivity was recovered.

The resulting label distribution was 4,931 not solved,
28,486 partially solved and 8,005 solved. In order to prevent
bias towards one of the classes, we introduce a balanced set of
4,542 calls from each class. Each of these sets gets further sub-
divided into a set of 906 calls for feature selection and a set of
3,603 calls for training and testing purposes. We also excluded
’not solved’ calls ending early due to opt-outs5 or early hang-
ups.

5. Interaction Parameters
In our study, we used parameters similar to the ones described
in [3]. In the first place, we modeled each system-user exchange
with a number of (Speech Recognition (ASR), Spoken Lan-
guage Understanding (SLU) and Dialog Manager (DM)-related
features:

ASR ASRRECOGNITIONSTATUS: one of ’success’, ’reject’,
’timeout’; ASRCONFIDENCE: confidence of the ASR;
BARGED-IN?: did the user barge-in?, MODALITY:
one of ’speech’, ’DTMF’; EXMO: the modality ex-
pected from the system (’speech’, ’DTMF’, ’both’); UN-
EXMO?: did the user employ another modality than ex-
pected?; GRAMMARNAMES: names of the active gram-
mars; TRIGGEREDGRAMMAR: name of grammar that
matched; UTTERANCE: raw ASR transcription; WPUT:
number of words per user turn; UTD: utterance turn du-
ration;

SLU SEMANTICPARSE: semantic interpretation of caller ut-
terance; HELPREQUEST?: is current turn a help re-
quest?; OPERATORREQUEST?: is current turn an opera-
tor request?;

Dialog Manager ACTIVITY: identifier of the current sys-
tem action; ACTIVITYTYPE: one of ’question’, ’an-
nouncement’, ’wait for user feedback’; PROMPT: sys-
tem prompt; WPST: number of words per system turn;
REPROMPT?: is current system turn a reprompt?; CON-
FIRMATION?: whether the current system prompt is a
confirmation to elicit common ground between user and
system due to low ASR confidence; TURNNUMBER:
current turn; DD: dialog duration up to this point in sec-
onds.

2according to [7]: TS : Fs “Failed because of the system’s behav-
ior” and TS : Fu “Failed because of the user’s behaviour”

3according to [7]: TS : SN : “Succeeded in spotting that no solu-
tion exists”

4according to [7] TS:S: “Succeeded (task for which solutions exist)”
5callers asking for an operator without being offered one



To account for the overall history of important system
events we added running tallies, percentages and mean values
for certain features symbolized with the suffixes ’#’, ’%’ and
’MEAN’. They are: MEANASRCONFIDENCE, the average of
ASR confidence scores from all user utterances so far in the
dialog, and #ASRSUCCESS, the number of succesfully parsed
user utterances so far. Further we calculate #ASRREJECTIONS,
#TIME-OUTPROMPTS, #BARGEINS, #UNEXMO and the re-
spective normalized equivalents with the prefix ’%’ instead of
’#’.

We consider the immediate context within the previous 3
turns of the current turn as particularly relevant for the task
completion. Hence, derived from the basic parameters we cre-
ated further parameters that emphasize specific user behavior
prior to the classification point. They are symbolized with
the prefix {#} for a number and {Mean} for the mean value.
A number of successive barge-ins or recognition problems
might indicate an endangered task completion. Thus we add
{MEAN}ASRCONFIDENCE, the mean confidence of the ASR
within the window, {#}ASRSUCCESS, {#}ASRREJECTIONS
and {#}TIME-OUTPROMPTS, i.e. the number of successfully
and unsuccessfully parsed utterances within the window and
the number of time-outs. The other counters are calculated like-
wise: {#}BARGEINS; {#}UNEXMO, {#}HELPREQUESTS,
{#}OPERATORREQUESTS, {#}REPROMPT,
{#}CONFIRMATIONS, {#}SYSTEMQUESTIONS.

6. Feature Selection
Remember, for both the linear and the n-gram approach, we use
a separately trained classifier and thus a separate model for each
possible turn length in the dialog system. In this study, we only
look at turns 9 through 25. Earlier turns are not considered since
the current dialog system spots caller opt-outs with static rules.
Later turns are not considered due to the lack of training calls
for the class ’not solved’. The last two turns of each dialog are
cut off since they most often contain operator requests, clearly
related to task failure.

The production set is used to determine the optimum num-
ber and combination of features since too many and strongly
correlated features might harm the classifier’s performance. We
employ a genetic algorithm with tournament selection to select
the best performing feature combination. Each iteration is based
on a 10-fold cross validated Support Vector Machine (SVM)
with linear kernel.

For each of the possible classification points (9-25) we ob-
tain thereby the optimum feature combination. A feature is ei-
ther included in one of these iterations or not.

To visualize the performance of important feature groups
we calculate an Information Gain Ratio ranking. It reveals for
each classification point how much information each feature
adds to the classification and by that the relevance of the feature
for the current decision. As can be seen in Figure 3 utterance-
related features (based on UTTERANCE and SEMANTICPARSE)
have a high contribution in the beginning. A similar contribu-
tion can be observed with the operator requests which are de-
rived from SEMANTICPARSE. We can assume that here many
callers are still opting out. At a later point more callers want
to stay with the system and other factors that indicate task fail-
ure gain importance. ASRCONFIDENCE, ASRREJECTIONS,
ASRSUCCESS including their statistics (#, %, {}, {Mean}) are
summarized under asr. They show a constant contribution. In-
teresting to note is that help requests are gaining importance
only at a later point. With help request callers ask for detailed

explanations. A very high contribution stems from duration fea-
tures. We can assume that a slower progress in the call flow is
an indicator for calls which are unlikely to end up with task
completion.
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Figure 3: Contribution of each feature group according to IGR
for the classification points 9-25 (normalized)

7. Evaluation
For evaluation purposes the parameter set in each iteration is
reduced according to the results from the feature selection pro-
cess in Section 6. Training and testing is performed with 10-fold
cross validation and a Support Vector Machine with linear ker-
nel. For the first evaluation we utilize the base feature set as it
was also used in [3] and [4]. In the second evaluation we add
the enhanced parameter set including running tallies, means and
percentages in order to explore which performance gains are to
be expected from the new extended parameter set. Results are
depicted in Figure 4.
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Figure 4: Performance of the classifier when trained with the
basic (dashed lines) and the enhanced feature set (solid lines).

As can be seen (green and blue dashed lines) the linear ap-
proach shows a comparatively good performance for a three-
class classification problem and stays significantly over the
baseline of 33%. The n-gram modeling, however, outperforms
the linear model in most turns. Especially in later turns the lin-
ear models lose performance while the n-gram models remain
stable. In the beginning between turns 9 and 11 we can note a
lower performance than in later turns. This may be attributed
to the peculiarities of the system behavior in this section or the
fact that only few information is available at the early dialog
turns. Given that the complexity of the n-gram models remain
static and the linear models (as the name suggests) increase lin-
early with increasing turn length, we can state that the n-gram
approach has clear advantages over the linear modeling.



The enhanced feature set (green and blue solid lines) yields
a higher performance than the reduced set. This is less surpris-
ing for the n-gram models since we add information that stems
from turns beyond the considered n-gram. Unlike the n-gram
models the linear feature vector contains already the same in-
formation in the reduced parameter set as in the enhanced one.
Obviously it has a beneficial effect on the classifier when certain
features are accentuated and emphasized as it was done with the
running tallies, percentages and mean values.

8. Conclusion and Discussion
The presented statistical method incorporates a high and par-
tially new number of interaction parameters which can all au-
tomatically be derived from call logs without manual interven-
tion. It could be shown that an n-gram-based modeling out-
performs linear modeling and seems to be more appropriate for
dialog systems with longer lasting dialogs. Both procedures
model the dialog history in a static way, i.e. with a static feature
vector. Since the character of the task is a continuous one, it
should be clarified in future work if and to which extent Hid-
den Markov Models would outperform the linear and n-gram
approaches with Support Vector Machines.

Certainly, the performance of a classifier will always de-
pend on the character of the data and the class labels. A differ-
ent dialog system along with another segmentation of the cor-
pus and a redefinition of what ’good’ and ’bad’ calls are would
change the results. As we have seen it is to a certain extent pos-
sible to predict task completion. However, we have to be aware
of the fact that there is no magic bullet. In a task where even
human raters would hardly be able to predict sudden hang-ups
or later opt-outs we cannot expect a classifier to reach 100%
performance. However, there are enough obvious patterns in
calls that are about to fail. The advantage of the classifier is cer-
tainly that it takes into account massive statistics and might de-
tect further patterns that would not be obvious to us as humans.
One example for such a pattern could be the probability of task
failure given the current dialog step in combination with ASR
performance and barge-in behavior. In the current design the
classifier cannot be used for black/white decisions in a dialog
system, i.e. we would better not rely on classification to trigger
escalation to an operator. However, the certainty of the decision
can be increased by a reduction to a binary instead of a three
class problem. Further, a cost-sensitive classification would in-
crease the recall of the ’not solved’ class. Still the classifier
could, as is, provide ’soft’ decisions, e.g. rank calls according
to their risk of task failure which would allow operators to step
into endangered calls according to the ranking.

Current work in the field of online prediction of task com-
pletion and problematic dialogs is still constrained on single
corpora. Our aim is to study the generalizability of these ap-
proaches with comparable conditions on multiple corpora. We
are currently preparing two more large databases from different
domains with the same parameter set to test against generaliz-
ability.
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