
ON AMBIGUITY DETECTION AND POSTPROCESSING SCHEMES
USING CLUSTER ENSEMBLES

Amparo Albalate, Aparna Suchindranath, Mehmet Muti Soenmez
Institute of Information Technology, University of Ulm

amparo.albalate@uni-ulm.de, aparna.suchindranath@uni-ulm.de, mehmez.soenmez@uni-ulm.de

David Suendermann
SpeechCycle Labs, NY, USA

david@speechcycle.com

Keywords: Cluster Ensembles, Uncertainty, Ambiguity.

Abstract: In this paper, we explore the cluster ensemble problem and propose a novel scheme to identify uncer-
tain/ambiguous regions in the data based on the different clusterings in the ensemble. In addition, we analyse
two approaches to deal with the detected uncertainty. The first, simplest method, is to ignore ambiguous pat-
terns prior to the ensemble consensus function, thus preserving the non-ambiguous data as good “prototypes”
for any further modelling. The second alternative is to use the ensemble solution obtained by the first method
to train a supervised model (support vector machines), which is later applied to reallocate, or “recluster” the
ambiguous patterns. A comparative analysis of the different ensemble solutions and the base weak clusterings
has been conducted on five data sets: two artificial mixtures of five and seven Gaussian, and three real data sets
from the UCI machine learning repository. Experimental results have shown in general a better performance
of our proposed schemes compared to the standard ensembles.

1 INTRODUCTION

In supervised learning, an ensemble is a com-
bination of classifiers with the goal to improve the
robustness and accuracy of the constituents clas-
sifiers. To date, a large body of research on
classifier ensembles has been conducted, show-
ing important improvements in comparison to sin-
gle classifiers (Schapire, 2002; Strehl et al., 2002;
Kuncheva, 2004).

In recent years, the achievements attained in
the field of supervised learning have increasingly
attracted the attention of the unsupervised com-
munity, and subsequently the ensemble framework
has also been investigated for clustering tasks.
A comprehensive overview has been provided in
(Strehl et al., 2002).

As in supervised learning, different scenarios to
achieve the required diversity of components in a
cluster ensemble have been proposed in the litera-
ture. According to (Strehl et al., 2002) three main ap-
proaches can be distinguished:

The Feature Distributed Clustering (FDC)ap-
proach is to run a clustering algorithm on a common

set of objects but different partial views of the feature
space.

The Object distributed clustering (ODC), or re-
sampling, is a second diversifying approach, where
the clusterers are fed with a common set of features
but different subsets of the data objects.

Finally, in the Robust Centralised clustering
(RCC) scenario, the ensemble components are
achieved by applying a common set of objects and
features to different clustering algorithms, using ei-
ther a unique or different distance functions.

The problem of combining the component parti-
tions in the ensemble to obtain an appropriate aggre-
gate solution is formulated as to optimise a given con-
sensus function. Different heuristics have been pro-
posed in (Strehl et al., 2002) for achieving the men-
tioned consensus function: the cluster similarity par-
titioning algorithm (CPSA), the hypergraph partition-
ing algorithm (HGPA) and the metaclustering al-
gorithm (MCLA). In this paper, we focus on the
CPSA heuristic, in which the different clusterings are
merged in a so-called co-association matrix, whose
(i , j ) entries encode the agreement of the different
partitions on clustering together the input objectsi



and j . Hence, the co-association matrix is a similar-
ity matrix which can be again applied to a clustering
algorithm to recluster the dataset.

The main objective of this paper is to exploit the
redundancy of clusterings in the ensemble for detect-
ing ambiguous regions in the data with a high de-
gree of uncertainty. Ambiguities can be associated
to different factors. For example, a high proximity of
two or more underlying classes may produce a certain
overlap between clusters, specially at patterns close to
the class’ boundaries. Note that this kind of ambigu-
ities, in contrast to outliers, is not due to abnormal
deviations with respect to the rest of the patterns in
the dataset, but inherently caused by the underlying
class structure. The detection and postprocessing of
outlier patterns is an important area in artificial intel-
ligence, with numerous research contributions. How-
ever, previous work to detect ambiguities has a more
limited coverage in comparison to the outliers litera-
ture. For example, in (Lin et al., 2006), an extension
of binary support vector machines was proposed to
identify new classes corresponding to uncertain re-
gions. In this work, we used the termsambiguity
or uncertaintyto indicate such patterns with a high
probability of belonging to a different cluster than
the one they are assigned to. Our assumption is that
the ambiguous regions should reflect a low agreement
between the clusterers in the ensemble. In the fol-
lowing sections we explain how to detect ambiguities
based on this idea. Following the detection of am-
biguities, we propose a strategy to analyse ambiguous
data. The simplest approach is to ignore these regions,
focusing on the rest of patterns as good prototypes.
The second approach is to assist the cluster ensem-
ble with the help of a robust “supervised” classifica-
tion method: Support Vector Machines (SVMs). We
explain how SVMs are used in an unsupervised man-
ner to solve the ambiguity problem. Finally, we show
the improvements in comparsion to the basic ensem-
ble by discarding ambiguous patterns, and even after
“reclustering” these patterns with the help of SVMs.

The structure of this paper is as follows: In Sec-
tion 2, the analysed data sets are presented, in Section
3, we describe the cluster ensemble approach used in
this work. The detection and post-processing of ambi-
guities are explained in Sections 4 and 5, respectively.
Finally, we show evaluation results in Section 6 and
draw conclusions in Section 7.

2 DATA SETS

In this work, we used five different datasets: two
mixtures of Gaussians, and three real data sets from

(a) (b)

Figure 1: Mixture of Gaussians data-sets. 1(a): Five Gaus-
sians, 1(b), seven Gaussians

the UCI machine learning repository.

Mixtures of Gaussians These data sets comprise
two mixtures of five and seven Gaussians with 1250
and 1750 points in two dimensions (Figure 1), where
a certain number of overlapping patterns (potential
ambiguities) can be observed. We used this data sets
with the purpose to provide an example of the uncer-
tainty problem in cluster ensembles.

Wine data set (WINE) The wine set is one of the
popular data sets from the UCI databank. It consists
of 178 instances with 13 attributes, representing three
different types of wines.

Wisconsin breast cancer data set (BREAST) This
data set constains 569 instances in 10 dimensions,
with 10 different features extracted from digitised im-
ages of breast masses. The two existing classes are
referred to the possible breast cancer diagnosis (ma-
lignant, benign).

Handwritten digits data set (PENDIG) The third
real data set is for pen-based recognition of handwrit-
ten digits. In our experiments, we used the test par-
tition, composed of 3498 samples with 16 attributes.
Ten classes can be distinguished for the digits 0-9.

3 CLUSTER ENSEMBLES

Diversifying scenario In order to achieve the re-
quired diversity of partitions in the ensemble, a ro-
bust centralised clustering scenario (RCC) has been
selected, using four different clustering methods: the
partition around medoids (pam), and the complete,
average and centroid linkage algorithms. Each clus-
tering method has been provided with the target num-
ber of clustersk, which is assumed to be known. Our
library or pool of clusterings is thus composed of four



component partitions, obtained by applying the four
mentioned clustering algorithms to the matrix of Eu-
clidean distances between the data objects. In the fol-
lowing, we refer to the clustering algorithms applied
to the raw Euclidean dissimilarities asbase clusterers.

Consensus function A CSPA consensus function
has been applied to the ensemble partitions in order
to compute an aggregate cluster solution. Fist, the
CSPA algorithm derives the co-association matrix,A,
whose elementsAi j denote the number of times that
the objectsi and j in the dataset have been assigned
to the same cluster by any pair of base clusterers in
the ensemble. As for the final consensus clustering,
a comparative analysis has been performed by apply-
ing again any of the aforementioned clustering meth-
ods, initially used as based clusterers, to cluster the
co-association matrix. At this stage, the clustering
algorithms are refered to asconsensus clusterers, in
order to be distinguished from their respective previ-
ous roles as base clusterers. The decision for a unique
consensus clustering has not been addressed in this
paper. However, one option would be to use a supra
consensus by selecting the clustering with highest av-
erage normalised mutual information (ANMI), in a
similar way as suggested in (Strehl et al., 2002) for
choosing between different consensus heuristics.

Because the agglomerative and pam clustering al-
gorithms used in this work are based on dissimilarity
functions and the co-association matrix naturally rep-
resents similarities between objects, a conversion of
the co-association values has been performed as fol-
lows:

A′
i j = 1−

Ai j

max(A)
(1)

so that the new co-association valuesA′ denote
distances between the objects.

4 DETECTION OF AMBIGUOUS
REGIONS

In this section, we describe the approach used to
detect uncertain regions in a data set given the com-
ponent partitions in the ensemble. First, we need to
quantify the “uncertainness” of each data point. As
explained in Section 1, we assume ambiguous pat-
terns should lead to a lower consensus between the
ensemble partitions. Thus, the first goal is to mea-
sure the agreement on which a given pattern is con-
sistently placed into the same cluster by the differ-
ent base clusterers in the ensemble. The solution to

this problem is not straightforward, given that the la-
bels rendered by a clustering algorithm are virtual
labels and cannot be directly compared. We pro-
pose a solution based on the concept of mutual infor-
mation (Cover and Thomas, 1991) between different
partitions. The normalised mutual information (NMI)
was proposed in (Strehl et al., 2002) as a measure of
the consensus between two cluster solutions,λ(a) and
λ(n), (Equation 2).

N M I (λ(a),λ(b)) = (2)
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Denoting n, the number of observations in the
dataset,k(a) andk(b), the number of clusters in the
partitionsλ(a) andλ(b); n(a)

h andn(b)
l , the number of

elements in the clustersCh andCl of the partitions
λ(a) and λ(b) respectively, andnh,l , the number of
overlapping elements between the clustersCh andCl .

For the present task, we measure the degree of
overlap between the clustersC(a)

h andC(b)
l containing

a patternp under evaluation in the partitionsλ(a) and
λ(b), respectively. We call this metric theNormalised
Cluster Overlap (NCO):
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nh,l

√
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(3)
The overall agreement in clustering the pattern is

then defined as the accumulated sum ofNC Os con-
sidering all possible pairs of cluster partitions in the
ensemble:

ANC O(λ, p) =

L−1
∑

r=1

L
∑

r ′=r+1

NC O(λ(r ),λ(r ′), p) (4)

BecauseANC O is a measure of consensus, low
values correspond to patterns with higher uncertainty
and vice-versa.

Figure 3 shows an example of the patterns iden-
tified as ambiguities (in red colour) using the above
described approach on the mixtures of Gaussians.

Finally, an ambiguous pattern is detected if its
ANC O value is found below a given threshold
ANC Oth. In this work, the threshold value has been
determined by visualising the histogram plot of the
ANC O values. Figure 2 shows the histograms of
ANC Ovalues in the analysed data sets and illustrates



Histogram of ANCO values (FIVE GAUSSIANS)
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Histogram of ANCO values (SEVEN GAUSSIANS)
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Histogram of ANCO values (WINE)
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Histogram of ANCO values (BREAST)
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Histogram of ANCO values (PENDIG)
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Figure 2: Histogram plots used in the determination of the ANCO threshold in the evaluated data sets.

the criterion for selecting theANC O thresholds cor-
responding to ambiguities. (Future work is to auto-
mate this step).

5 PROCESSING AMBIGUOUS
DATA

5.1 Support Vector Machines (SVM)

Support Vector Machines are amongst the most popu-
lar classification and regression algorithms because of
their robustness and good performance in comparison
to other classifiers (Burges, 1998; Joachims, 1998;
Lin et al., 2006). In its basic form, SVM were de-
fined for binary classification of linearly separable
data. Let us denote a set ofL training patternsX =

{x1,x2, · · · xL} in RD. For binary classes, we denote
the set of labels corresponding to the training data:
Y = {y1, · · · , yL}, with yi ∈ {1,−1} (Figure 4).

Assuming that the classes (+1,-1) are linearly sep-
arable, the SVM goal is to orientate a hyperplane
H which maximises the margin between the closest
members of the two classes (also called support vec-

tors). The searched hyperplane is given by the equa-
tion:

H = {x ∈ RD | wx +b = 0} (5)

denotingw the normal vector of the hyperplane.
In addition, the parallel hyperplanesH1 andH2 at the
support vectors of classesy = 1 andy = −1 are de-
fined as:

H1 = {x ∈ RD | wx +b = 1}, (y = 1)

H2 = {x ∈ RD | wx +b = −1}, (y = −1) (6)

(a) (b)

Figure 3: Example of detected ambiguities in the mixtures
of Gaussians. Ambiguous patterns are depicted with red cir-
cles, in contrast to non-ambiguous patterns(black circles).
3(a): Five Gaussians, 3(b), seven Gaussians
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Figure 4: SVM example of binary classification through hy-
perplane separation (in this two-dimensional case the hyper-
plane becomes a line).

It can be demonstrated that the margin between
the hyperplanesH1 and H2 is 1

||w||
. In addition, the

training points at the left/right sides of the hyper-
planesH1 andH2 need to satisfy:

yi (wxi +b)−1≥ 0 ∀i (7)

Thus, the maximum margin hyperplane is ob-
tained by solving the following objective:

minimise ‖ w ‖ such thatyi (wx +b)−1≥ 0 (8)

By applying Lagrange multipliers, the objective in
Equation 9 can be solved using constrained quadratic
optimisation. After some manipulations, it can be
shown that the initial objective is equivalent to:

maximise
L

∑

i=1

(

αi −
1

2

∑

j

αi α j yi y j xi x j
)

subject to αi ≥ 0 ∀i , and
L

∑

i=1

αi yi = 0 (9)

The solution of this quadratic optimisation prob-
lem is a set of coefficientsα = {α1, · · · ,αL} which are
finally applied to calculate the hyperplane variablesw
andb:

w =
∑

αi yi xi (10)

b =
1

Ns

∑

s∈S

ys −
∑

m∈S

αmymxmxs (11)

whereS denotes the set of support vectors, of size
Ns.

Although the solution in Equation 10 is found
for the basic problem of binary, linearly separable
classes, SVMs have been extended for both multi-
class and non-linear problems.

The kernel trick for non-linearly separable classes
The application of SVMs to non-linearly separable
classes is achieved by substituting the dot product
xi x j in Equation 9 by an appropriate function, the
so called kernelk(xi ,x j ). The purpose of this “ker-
nel trick” is that a non-linear kernel can be used to
transform the feature space into a new space of higher
dimension. In this high dimensional space it is pos-
sible to find a hyperplane to separate classes which
may not be originally separable in the initial space. In
other words, the kernel function is equivalent to the
dot product:

k(xi ,x j ) =< φ(xi )φ(x j ) > (12)

whereφ denotes a mapping of a pattern into the
higher dimensional space. The main advantage is that
the kernel computes these dot products without the
need to specify the mapping functionφ.

Multi-class classification The extension for the
multi-class problem is achieved through a combi-
nation of multiple SVM classifiers. Two different
schemes have been proposed to solve this problem:
in a one-against-allapproach,k hyperplanes are ob-
tained to separate each class from the rest of classes.
In a one-against-oneapproach,(k

2) binary classifiers
are trained to find all possible hyperplanes to separate
each pair of classes.

5.2 SVMs to recluster ambiguous data

The simplest approach to deal with uncertainty is to
treat the ambiguous patterns as noise patterns and ig-
nore them, retaining the rest of data as good proto-
types for any further processing. However, reject-
ing uncertain data can result in a considerable loss of
relevant information, specially when these observa-
tions can help reveal the underlying data distribution.
Therefore, in this section we propose an alternative to
the simple rejection of the detected ambiguities based
on support vector machines.

First, patterns detected as ambiguous (Section 4)
are removed from the ensemble partitions. The co-
association matrix is recalculated considering only
the unambiguous patterns. Intuitively, the recal-
culated co-association matrix should reflect higher
consensus among the combined partitions, as the
removed ambiguous patterns introduced a certain
“noise” in this matrix. The consensus clustering is
then applied to the new co-association matrix in or-
der to achieve a more robust aggregate solution. If no
further post-processing of the removed ambiguities is
performed, the described procedure up to this stage
corresponds to the simple removal of ambiguities.



Processing of ambiguities Now, we consider the
consensus solution obtained by using any of the afore-
mentioned clustering algorithms to recluster the new
co-association matrix after removal of ambiguities.
Since this solution is achieved in absence of ambigu-
ous patterns, we assume a more robust representation
of the surrogate classes is attained in the output clus-
ters. Of course, a certain error is made by the cluster-
ing process, which can be measured if reference class
labels are available for a dataset, by calculating the
normalised mutual information (NMI) between the
cluster solution and the reference labels. However,
we ignore this error, assuming that the class structure
is adequately covered in the cluster solution. Next,
we assign a different “virtual” label to each one of
the obtained clusters - or classes. Thereby, a training
set is implicitely generated in an unsupervised man-
ner, using only the information in the ensemble - the
only supervised action involved in the whole process
is the selection of anANC O threshold for detecting
ambiguous patterns, but we have shown (Section 4)
how this threshold can be easily determined by us-
ing histograms. This automatically generated train-
ing set is then used to train a model based on Support
Vector Machines to find the hyperplanes separating
the (virtual) classes. Finally, the SVM model is ap-
plied to make predictions on the ambiguous patterns,
previously removed from the ensemble. Hence, the
SVM decides which cluster in the consensus solution
an ambiguous pattern should be reallocated to.

6 EVALUATION AND TESTS

For evaluation purposes, we compared the clus-
tering solutions with the reference category labels,
which are available for all analysed data sets. There
are different external validation metrics which can be
used to measure the correspondence between a clus-
ter partition and the reference labels, including en-
tropy, purity (Boley et al., 1999), or the Normalised
Mutual Information (NMI, Equation 2). In this pa-
per we selected the latter one due to its property of
impartiality versus the number of clusters, in contrast
to entropy or purity, as suggested by Stern and Gosh
(Strehl et al., 2002).

We thus compared the NMI-based quality of the
ensemble consensus solutions (by using the agglom-
erative and pam algorithms as different consensus
clusterers applied to the co-association matrix) with
the values obtained by their respective base clusterers.
In addition, as is the focus of this work, we also eval-
uated the final ensemble solution when our scheme to
tackle ambiguities is introduced. In this respect, two

situations have been considered: (a) simple removal
of ambiguous patterns (in which case the category la-
bels corresponding to ambiguities have been also re-
moved from the reference label sets prior to test), and
(b) post-processing ambiguities with the help of sup-
port vector machines.

Tables 1 to 5 show the results obtained with the
evaluated approaches on the mixtures of Gaussians,
PENDIG, BREAST and WINE data sets. The first
rows show NMI values obtained by the base clusterers
(the complete, average and centroid linkages and the
partitioning around medoids applied on the original
matrix of object distances (ensemble components).
The second rows refer to the aggregate ensemble solu-
tions obtained by applying again the initial clustering
algorithms (complete, average, centroid linkage and
pam) as different consensus clusterers used to reclus-
ter the co-association matrices. The third rows indi-
cate the performance of the ensembles when the am-
biguity detection (AD) schemes are applied and the
ambiguous patterns are removed prior to consensus
clustering. Finally, the fourth and last rows show the
NMI values obtained by the final ensemble solutions
when the AD is introduced to detect ambiguities and
Support Vector Machines models are applied to post-
process and reallocate ambiguous data, using radial
and linear kernel functions (referred to as svm R and
L, respectively). Note also that the last columns in
each row refer to the average NMI scores of the four
clustering algorithms in each case.

As it can be observed, the ensemble approach out-
performs the corresponding base clusterers in all data
sets except WINE. The poorer performance in this
dataset can be associated to the inability of two of the
base clusterers (50% of the ensemble components) in
recovering any class structure (NMI values lower than
0.40%). This considerable proportion (50% of the en-
semble components) of “bad” clusterings has an im-
pact on the new co-association matrix, in such a way
that a third agglomerative approach fails to achieve an
adequate consensus, although the same algorithm was
originally able to recover more than 50% of the class
structure (NMI score) by using the object distance
matrix. On the other hand, note that the consensus
based on the partitioning around medoids algorithm
(pam) outperforms the corresponding base clusterer
in the ensemble (pam applied to original distances),
which also shows the best performance among the
base clusterers.

Nevertheless, the ensemble solutions outperform
the base components in all other data sets, where at
least 3/4 of the ensemble components are able to de-
tect some class structure (NMI values greater than
50%). The robustness of the ensemble solution is



Table 1: Seven Gaussians data set.

Clustering
Avg.

com. avg. cen. Pam

Base 0.907 0.913 0.915 0.945 0.920
Ensemble(E) 0.924 0.921 0.924 0.921 0.922
E + AD(ignore) 0.956 0.956 0.956 0.956 0.956
E + AD(svm L) 0.939 0.939 0.939 0.939 0.939
E + AD(svm R) 0.938 0.938 0.938 0.938 0.938

Table 2: Five Gaussians data set.

Clustering
Avg.

com. avg. cen. Pam

Base 0.955 0.932 0.908 0.943 0.935
Ensemble 0.943 0.945 0.945 0.945 0.944
E + AD(ignore) 0.974 0.974 0.974 0.974 0.974
E. + AD(svm L) 0.950 0.950 0.950 0.950 0.950
E. + AD(svm R) 0.949 0.949 0.949 0.949 0.949

Table 3: PENDIG data set.

Clustering
Avg.

com. avg. cen. Pam

Base 0.537 0.652 0.030 0.658 0.469
Ensemble (E) 0.324 0.617 0.331 0.679 0.488
E + AD(ignore) 0.544 0.673 0.562 0.730 0.627
E + AD(svm L) 0.507 0.632 0.517 0.690 0.587
E + AD(svm R) 0.512 0.638 0.529 0.692 0.593

also revealed by smaller standard deviations of NMI
scores across different consensus clusterings, in com-
parison to the respective base clusterings.

The incorporation of our approach to deal with
ambiguities shows important improvements with re-
spect to the standard ensemble. The best performance
is attained by detecting and rejecting ambiguous pat-
terns. The average increment of NMI scores ranges
from only one percentual point in the WINE dataset,
to 8% or 14% in the BREAST and PENDIG data sets.

Also the reallocation of ambiguities using support
vector machines results in higher NMI scores when
compared to the initial ensemble. Different average
improvements are observed, up to 4.3% and 9.9% in
the BREAST and PENDIG data sets, respectively.

7 CONCLUSIONS AND FUTURE
DIRECTIONS

In this paper we have explored the cluster en-
semble problem, which aims at combining different
cluster partitions in order to improve the performance

Table 4: BREAST data set

Clustering
Avg.

com. avg. cen. Pam

Base 0.520 0.677 0.018 0.741 0.489
Ensemble 0.685 0.685 0.685 0.685 0.685
E + AD(ignore) 0.766 0.766 0.766 0.766 0.766
E + AD(svm L) 0.726 0.726 0.726 0.726 0.726
E + AD(svm R) 0.728 0.728 0.728 0.728 0.728

Table 5: WINE data set.

Clustering
Avg.

com. avg. cen. Pam

Base 0.550 0.031 0.038 0.721 0.335
Ensemble(E) 0.031 0.031 0.031 0.729 0.205
E + AD(ignore) 0.039 0.039 0.039 0.745 0.215
E + AD(svm L) 0.038 0.038 0.038 0.737 0.213
E + AD(svm R) 0.038 0.038 0.038 0.737 0.213

and robustness of the aggregate solutions in compar-
ison to the ensemble components. In particular, we
focused on the Cluster Similarity Partitioning sce-
nario (CSPA). This approach to cluster ensembles is
to combine the clusterings by calculating an interme-
diate co-association matrix, which encodes the con-
sensus or agreement between the partitions in the en-
semble. The co-association matrix is used by any
clustering algorithm to provide a higher-level, con-
sensus clustering of the input data.

We further incorporate a strategy that is able to
detect ambiguous regions in the data by analysing
the different partitions in the ensemble. Prior to the
consensus clustering, the ambiguities detected are re-
moved from the component partitions, resulting in no-
table improvements of the aggregate solutions in com-
parison to the standard ensemble. We also propose
an approach to reallocate an ambiguous pattern into
one of the output clusters by using support vector ma-
chines in an unsupervised manner. An improvement
of the ensemble performance has also been observed
in this case.

Future work is to increase the number of cluster-
ers in the ensemble and investigate ensemble selection
approaches (Fern and Lin, 2008) in order to avoid the
potential degradation of the ensemble performance if
a significant number of “bad” clusterers inappropriate
for a dataset are present among the ensemble compo-
nents.
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