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Abstract: In this paper we propose a hierarchical, divisive, clustering algorithm, called Hierarchical Pole Based Clus-
tering (HPoBC), which is able to find the clusters in a data setwithout any user input parameter such as
the number of clustersk. The algorithm is based on the Pole Based Overlapping Clustering (PoBOC)
(Cleuziou et al., 2004). Initially, the top hierarchy levelis composed by the set of clusters discovered by
the PoBOC algorithm on the dataset. Then, each single cluster is again analysed using a combination of
PoBOC and cluster validity methods (silhouettes) in order to search for new possible subclusters. This process
is recursively repeated on each newly retrieved cluster until the silhouette score suggests to stop any further
partitioning of the cluster. The HPoBC algorithm has been compared to the original PoBOC as well as other
classical hierarchical approaches on five two-dimensional, synthetic data sets, using three cluster evaluation
metrics.

1 INTRODUCTION

Cluster analysis refers to techniques used to dis-
cover the group structure in a certain data set. These
algorithms have multiple applications, such as image
segmentation, text mining, or the analysis of genomic
and sensorial data, among others.

A large variety of clustering techniques have been
proposed over the past decades. Because no prior
knowledge is required about the object’s group labels,
clustering algorithms are unsupervised learning mod-
els. However, most algorithms in the clustering lit-
erature are parameterised approaches, i.e, the cluster
solutions depend on some user input parameters de-
scriptive for the dataset. Typical input parameters are
the target number of clusters, or density indicators in
density models.

The Pole Based Overlapping Clustering algorithm
(PoBOC), proposed in (Cleuziou et al., 2004), is an
overlapping, graph-based clustering approach which
does not require any input information from the user.
The algorithm iteratively identifies a set of initial clus-
ter prototypes, and builds the clusters around these
objects based on an object’s neighbourhood notion.

One limitation of the PoBOC algorithm is related
to the neighbourhood formulation applied to extract
the final clusters. The neighboorhood of one object
is defined in terms of the object’s average distance to
all other objects in the data set (see Section 2.1). This
global definition can be suitable for discovering uni-
formly spread clusters on the data space. However,
the algorithm may fail to identify all existing clus-
ters if the input data are organised in a hierarchy of
classes, in such a way that two or more subclasses are
closer to each other than the average class distance.

In order to overcome this limitation, we propose
a new hierarchical algorithm based on PoBOC, called
“Hierarchical Pole-Based Clustering” (HPoBC). The
hierarchy of clusters and subclusters is detected
though a recursive approach. First, the PoBOC al-
gorithm is used to identify the clusters in the data set,
also referred to as “poles”. Next, under the hypoth-
esis that more subclusters may exist inside any pole,
PoBOC is again locally applied to each initial pole. A
cluster validity based on silhouette widths is then used
in order to validate or reject the subcluster hypothesis.
If the subcluster hypothesis is rejected by the silhou-
ette score, we discard the candidate subclusters and



select the initial pole as part of the output clusters.
Otherwise (the hypothesis is validated) we store the
new identified poles (subclusters) and continue with a
similar analysis inside each new pole. This procedure
is applied recursively until the silhouette rejects every
further hypothesis.

The paper is organised as follows: In Section 2
an overview of the PoBOC algorithm is presented. In
Section 3, we introduce some of the classical hierar-
chical clustering approaches. In Section 4, the new
HPoBC algorithm is described in detail. Finally, in
Sections 5 and 6, we present evaluation results and
draw conclusions, respectively.

2 THE POLE BASED
OVERLAPPING CLUSTERING
(PoBOC)

The Pole Based Overlapping Clustering is an
overlapping, graph-based clustering technique pro-
posed by (Cleuziou et al., 2004). The algorithm takes
the matrix of object dissimilarities as single input and
builts the output clusters in four main steps: (i) Defini-
tion of dissimilarity graph, (ii) construction of poles,
(iii) pole restriction and (iv) affectation of objects to
poles.

2.1 Definition of a dissimilarity graph

Let X denote the set ofn data points (objects) in the
data set, andD the dissimilarity matrix, computed
overX .

The dissimilarity graphG(X ,V, D) is then spec-
ified by: (i) the dissimilarity matrixD, (ii) the data
points or vertices,X , and a set of edgesV between
all pairs of vertices(xi ,x j ) corresponding to mutual
neighbour points.
Definition 1: (Neighbourhood of a pointx): The
neighbourhood of a pointx, denoted byN(x) is com-
posed of all points ofX whose dissimilarity to the
point is smaller than the mean distance of the object
x to all other objects inX (dmean(x;X )):
N(x) = {x j ∈ X |Dx j ,x < dmean(x;X ) }
Definition 2: Two points(xi ,x j ) are mutual neigh-
bours, and thus connected by an edge in the GraphG
if each one belongs to the neighbourhood of the other:
(xi ,x j ) ∈ V ↔ xi ∈ N(x j ); x j ∈ N(xi )

2.2 Pole Construction

This procedure builds incrementally a set of poles
P = {P1, P2 . . . , Pk}. Let {O} denote the cumulated

set of objects that belong to any of the extracted poles
up to the current state (initially the empty set).

The poles are grown from initial pointŝxi , which
are the points with maximum mean distance to the
cumulated set of polesO. Initially, the objectx̂0 with
maximum distance toX is selected:

x̂0= argmax
x∈X

dmean(x,X ) (1)

x̂i = argmax
x∈X /O

dmean(x,O) (2)

EachPi pole is then grown from the correspond-
ing initial object x̂i , in such a way that all the pole
members are enclosed in their respective neighbour-
hoods. This is implemented in the pole-construction
procedure:

Algorithm 1 pole-construction(̂x, G(X ,V, D))
Initialise P = x̂
Obtain neighbourhood ofP:
N(P) = {x ∈ X |∀xi ∈ P, (x,xi ) ∈ V}
while N(P) 6= ∅ do

attach the objectx to P such that:
x ∈ N(P) andx = argmaxxi∈N(P) dmean(xi , P)
UpdateN(P)
Return the resulting poleP

end while

The selection of the initial object̂xi and the con-
struction of the corresponding polePi is iteratively
repeated until all objects in the data set are contained
in any of the poles,{O} = {X }, or no initial object can
be found which is sufficiently distant from the set of
poles.

2.3 Pole Restriction

After the pole construction, overlapping objects may
be obtained, which simultaneously belong to the
neighbourhood of two or more poles. These objects
compose the residual set{R}. The pole restriction
procedure consists of removing residual objects from
the original poles, resulting in a new set of reduced,
non-overlapping poles:̃P .

2.4 Affectation Stage

The residual objectsR obtained at the pole restriction
stage require some post-processing strategy, in order
to be reallocated into one or more of the restricted
poles. This reallocation of objects in PoBOC is called
affectation. First, the membership of each objectx to
eachP̃i restricted pole,u(x, P̃i ) is computed as:

u(x, P̃i )= 1−
dmean(x, P̃i )

Dmax
(3)



Then, the objects are affected to one or more
poles. In a single-affectation approach, each object
x is assigned to the pole maximising the membership
u(x, Pj ). In a multi-affectation approach, the object is
affected to the poles whose memberships are greater
than some reference values given by a linear approx-
imation on the set of object memberships, sorted in
decreasing order.

3 HIERARCHICAL CLUSTERING

Classical approaches for hierarchical clus-
tering obtain the cluster solution by iterative
mergings or divisions of clusters (Everitt, 1974;
Kaufmann and Rousseeuw, 1990). Two major
hierarchical approaches can be distinguished:
agglomerative and divisive.

Hierarchical agglomerative approaches Agglom-
erative algorithms are the so-called bottom-up ap-
proaches, starting with all points as individual clusters
and successively merging the closest pair of clusters
until all patterns are enclosed in a single cluster. The
algorithms can be visualised using a graphical tree
structure called dendogram where the pair of clusters
that are merged at each iteration can be observed. The
final cluster solution is selected by the user, by spec-
ifying a level to cut the dendogram or, equivalently,
a desired numberk of clusters. Different agglomer-
ative approaches can be distinguished, depending on
the proximity criterion to merge the next pair of clus-
ters. For example, while thesingle linkagealgorithm
selects the pair of clusters with the minimum distance
between their closest elements, thecomplete linkage
algorithm selects the clusters with minimum distance
between the farthest objects. In a similar way, the
average linkageandcentroid algorithms choose the
clusters with the minimum average inter cluster dis-
tance and the minimum distance between their cen-
troid objects, respectively.

Hierarchical divisive approaches As opposed to
agglomerative algorithms, a divisive approach, such
as the divisive analysis (DiANA) algorithm, starts at
the top dendogram level where all objects compound
a unique cluster and iteratively splits the biggest clus-
ter until each object is in its own cluster. The reader is
referred to (Everitt, 1974) for more details about the
Divisive Analysis algorithm.

4 NEW HIERARCHICAL
POLE-BASED APPROACH

The new clustering method is combination of the
PoBOC algorithm and hierarchical divisive clustering
strategies. In a divisive manner, the proposed hier-
archical approach is initialised with the set of poles
identified by thePoBOCalgorithm, and recursively
applied to each obtained pole, searching for possible
subclusters.

4.1 Pole-Based Clustering basis module

In order to detect the set of poles in the new hier-
archical approach, we preserve the graph construc-
tion, pole construction and pole restriction stages of
POBOC, but the affectation step has been replaced by
a new procedure calledpole regrowth:

Algorithm 2 pole regrowth({P̃},{R})
Input: set of poles and residual from the pole-reduction
step:{P̃},{R})
Output: set of regrown poles{P̂}
Initialisation{P̂} = {P̃}
while R <> ∅ do

Find the pair (point∈ {R}, pole∈ {P̂}) with minimum
distance:
(xi , P̂j )= argminx∈R(argminP̂(Dmin(x, P̂k))),

Dmin(xi , P̂j )=min(Dxi ,x j∈P̃j
)

Attach the pointxi to its closest pole and remove it
from the residual set:
UpdateP̂j ← P̂j ,xi
Update{R}← {R}− xi

end while
Return{P̂}

The pole-regrowth procedure is an alternative to
the PoBOC single affectation for reallocating overlap-
ping objects into one of the restricted poles. As it can
be observed in Figure 1(a), not only a pole but also an
overlapping region may contain potential subclusters.
If each overlapping objectxi is individually assigned
to the pole maximising the membershipu(xi ; P), the
objects inside a single cluster might be assigned to
different poles1. The pole regrowth procedure is in-
tended to avoid any undesired partitioning of clusters
existing in overlapping areas while reallocating resid-
ual objects.

An example of the pole regrowth method is shown
in Figure 1. Figure 1(a) shows two restricted poles
in red and green colours, respectively. All points be-
tween these restricted poles are overlapping points. It

1Recall that the hierarchical approach is independently
applied to the grown poles



(a)
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Figure 1: Example of the pole growth.1(a) Two restricted
poles and their overlapping objects. 1(b) New poles ob-
tained after the reallocation of overlapping objects by the
pole regrowth method.

can be observed that many of these overlapping points
build another two clusters, which PoBOC fails to de-
tect. The reallocation of overlapping points by the
pole regrowth procedure is illustrated in Figure 1(b).
A single affectation would have splitted each overlap-
ping cluster in two halfs (upper and bottom). Using
the pole regrowth, all objects inside each overlapping
cluster have been jointly assigned into a single pole.
This fact allows to detect the overlapping clusters in
further recursive steps.

We refer to the modified PoBOC algorithm as
Pole-Based clustering module, which is the basis for
the hierarchical approach described in the following
paragraphs:

Algorithm 3 Pole-Based clustering module(C,X )
Input:
C: Matrix of coordinates (attributes) of all points in the
data set,
X : Indexes of the points (rows ofC) to be clustered.
Output: Regrown poles{P̂}.
Compute dissimilarity matrix ofC overX : DX
Compute dissimilarity graph overX , GX(X ,VX, DX)
{P} ← Pole Construction (GX(X ,VX, DX))
{P̃},{R} ← Pole Restriction ({P})
{P̂} ← Pole Regrow ({P̃},{R}, DX)
Return{P̂}.

4.2 Hierarchical Pole-Based Clustering
(HPoBC)

The proposed algorithm is calledHierarchical Pole
Based Clustering (HPoBC).

First, the Pole Based Clustering module is applied
to the entire dataset to obtain an initial set of poles.
Then, a recursive function, thePole Based Subclus-
ter Analysisis triggered on each pole with more than
one object. If an individual pole is found, the cor-
responding object is attached to the set of final clus-
ters as an individual cluster. This recursive function
is continuously called with the objects of each ob-
tained pole, internally denotedˆPtop, because it refers
to an upper level in the hierarchy. Analogously, the

new set of poles found on ˆPtop is denoted ˆPsub, in-
dicating a lower hierarchy level. These poles repre-
sent candidate subclusters. In order to decide wether
ˆPsub compounds “true” subclusters or not, a criterion

typically used for cluster validity is applied, namely
the silhouette width(Rousseeuw, 1987). The silhou-
ette width of a cluster partitionC returns a quality
score in the range [-1,1] where 1 corresponds to a
perfect clustering. According to (Treeck, 2005), a
silhouette score smaller or equal than 0.25 is an in-
dicator for wrong cluster solutions. However, from
our experiments, a more rigorous thresholdsil > 0.5
has proven adequate for validating the candidate sub-
clusters. The problem of deciding whether a data set
contains a cluster structure or not is commonly re-
ferred to as cluster tendency in the cluster literature
(Jolion and Rosenfeld, 1989). If the quality criterion
is not fulfilled (sil < 0.5) the subcluster hypothesis
is rejected, and the top cluster̂Ptop is attached to the
final clusters. Otherwise, we continue exploring each
subcluster in order to search for more possible sub-
levels.

Algorithm 4 Hierarchical Pole-Based Clustering -
HPoBC(X )

Initialisation
Points indexesC← 1, . . . , length(X )
Set of Cluster Solution: Clusters :{∅}
Obtain set of grown poles on allX objects:
P̂← Pole-Based Clustering Module(X ,C)
for all {P̂i } ∈ {P̂} do

if |{P̂i }|> 1 then
Trigger recursive search for subclusters:
Pole-Based Subcluster Analysis (X , {P̂i }, Clusters)

else
Add {P̂i } to Clusters

end if
end for
Return Clusters



Algorithm 5 Pole-Based Subcluster Analysis
(X ,{P̂top},Clusters)

{P̂sub}← Pole-Based Clustering Module(X ,{P̂top})

stop← (silhouette-width({ ˆPsub})≤ 0.5)
if stop=truethen

Add {P̂top} to Clusters:
Return

else
for all {P̂sub

i } ∈ { ˆPsub} do

if |{P̂i
sub
}|> 1 then

Pole-Based Subcluster Analysis (X , {P̂sub
i },

Clusters)
else

Add {P̂sub
i } to Clusters

Return
end if

end for
end if

5 EVALUATION METHODS

The PoBOC algorithm as well as the hierarchi-
cal pole based clustering (HPoBC) have been com-
pared to other hierarchical approaches: the single,
complete, centroid and average linkage and the di-
visive analysis (DiANA) algorithm. These classical
hierarchical algorithms are examples of clustering ap-
proaches that require the target number of clusters (k)
in order to find the cluster solutions. In order to allow
for a comparison of PoBOC and HPoBOC to the hier-
archical agglomerative approaches, these algorithms
have been called with different values of thek param-
eter, and the silhouette index has been applied to val-
idate each solution and predict the optimum number
of clusters,kopt. Note that, while the Silhouette in-
dex is used in agglomerative algorithms and DiANA
as a cluster validity strategy to select the optimumk
among a set ofK possible cluster solutions, in the hi-
erarchical Pole Based algorithm, the Silhouette scores
are applied in a recursive and “local” manner, in order
to evaluate the cluster tendency inside each obtained
pole.

Data sets: The described approaches have been ap-
plied to the synthetic data sets of Figure 2: The first
dataset (100p5c) comprises 100 objects in 5 spatial
clusters (Figure 2 (a)), the second dataset (6Gauss)
is a mixture of six Gaussians (1500 points) in two di-
mensions (Figure 2(e)). The third data set is a mixture
of three Gaussians (3Gauss) in which the distance of
the biggest class to the other two is larger than the dis-
tance among the two smaller Gaussians (Figure 2(i)).
This data set illustrates a typical example in which
using cluster validity based on Silhouettes may fail to

predict the number of classes due to the different in-
terclass distances. The fourth and fifth data (560p8c
and 1000p9c) contain 560 and 1000 points in two di-
mensions, with 8 and 9 spatial clusters, respectively
(Figures 2(m) and (q)).

The cluster solutions provided by PoBOC,
HPoBC and an example hierarchical agglomerative
approach (average linkage) are shown in the plots of
Figure 2 (different colours are used to indicate differ-
ent clusters).

5.1 Cluster evaluation metrics

For a comprehensive evaluation of the discussed al-
gorithms, their cluster solutions have been also com-
pared with the reference category labels, available
for evaluation purposes, using three typical “external”
cluster validation methods: Entropy, Purity, and Nor-
malised Mutual Information.

Entropy The cluster entropy (Boley et al., 1999)
reflects the degree to which the clusters are composed
of heterogeneous patterns, ie, patterns that belong to
different categories. According to the Entropy crite-
rion, a good cluster should be mostly aligned to a sin-
gle class, which means that a large number of the clus-
ter objects belong to the same category. This quality
condition corresponds to low entropy values. The en-
tropy of a clusteri is defined as:

Ei =−

L
∑

j=1

pi j log2(pi j ) (4)

where L denotes the number of reference cate-
gories, andpi j , the probability that an element of cat-
egory j is found in clusteri . This probability can be
formulated aspi j =

m j
mi , denotingm j the number of

elements of classj in the clusteri , andmi , the total
number of elements in the clusteri .

The total entropy of the cluster solutionC is ob-
tained by averaging the cluster entropies according to
Equation 5 (m denotes the total number of elements
in the data set):

E(C)=

k
∑

i=1

mi

m
Ei (5)

As discussed above, “good” cluster solutions yield
small entropy values.

Purity Like entropy, purity (Boley et al., 1999;
Wu et al., 2009) is a metric to measure the extent to
which a cluster contains elements of a single category.



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 2: Spatial databases and the extracted clusters using PoBOC and HPoBC and the average linkage clustering algorithms.
2(a): Data set with 100 points in 5 spatial clusters (100p5c), 2(e): mixture of 6 gaussians, 1500 points (6Gauss), 2(i): mixture
of three gaussians (3Gauss), 2(m): 560 points, 8 clusters (560p8c) and 2(q):1000 points, 9 clusters (1000p9c). 2(b),2(f), 2(j),
2(n) and 2(r): poles detected by PoBOC in the data sets. 2(c),2(g), 2(k), 2(o)and 2(t): clusters detected by the new HPoBC
algorithm (black circles indicate patterns detected as outliers by the algorithms). 2(d),2(h), 2(l), 2(p) and 2(s): clusters detected
by the average linkage algorithm.



The purity of a clusteri is defined in terms of the max-
imum class probability,Pi =maxj (pi j )

The overall purity of a cluster solution is calcu-
lated by averaging the cluster purities:

P(C)=

k
∑

i=1

mi

m
Pi (6)

Higher purity values indicate a better quality of
the clustering solution, up to a purity value equal to
one, which is attained when the cluster partition is
perfectly aligned to the reference classes.

Normalised Mutual Information (NMI) The Nor-
malised Mutual information (NMI) measures the
agreement between two partitions of the data,λ(a) and
λ(n), (Equation 7).

N M I (λ(a),λ(b))= (7)

=

∑k(a)
h=1

∑k(b)
l=1 nh,l log

( n·nh,l

n(a)
h n(

l b)

)

√

(
∑k(a)

h=1n(a)
h log

(n(a)
h
n

)

)((
∑k(b)

l=1 n(b)
l log

(n(b)
l
n

)

)

Denoting n, the number of observations in the
dataset,k(a) andk(b), the number of clusters in the
partitionsλ(a) andλ(b); n(a)

h andn(b)
l , the number of

elements in the clustersCh andCl of the partitions
λ(a) and λ(b) respectively, andnh,l , the number of
overlapping elements between the clustersCh andCl .
The normalised mutual information can be used as a
quality metric of a cluster partition by comparing the
cluster solutionC with the reference class labelsL,
N M I (C,L).

5.2 Results

As can be seen in Tables 1 to 5, the performance of
the HPoBC algorithm is consistently superior to the
original PoBOC algorithm on all datasets and met-
rics. The classical (divisive and agglomerative) ap-
proaches with the help of Silhouettes to determine
the optimumk are also able to detect the class struc-
ture in three data sets (100p5c, 1000p9c and 6Gauss).
The performance of classical approaches is thus com-
parable to the HPoBC algorithm on the mentioned
data sets. Note that, in some cases, the NMI score
achieved by HPoBC is marginally inferior (≤ 1.8%)
to other hierarchical approaches, due to the false dis-
covery by HPoBC of tiny clusters in the boundaries
of a larger cluster. In contrast to the previous data
sets, the DiANA and agglomerative hierarchical ap-
proaches fail to capture accurately the existing classes

Table 1: 560p8c Data

Clustering # Clusters NMI Purity Entropy

DiANA 5 0.850 0.660 0.840
single 5 0.850 0.660 0.840
complete 5 0.850 0.660 0.840
average 5 0.850 0.660 0.840
centroid 5 0.850 0.660 0.840

PoBOC 4 0.801 0.548 1.048
HPoBC 7 0.944 0.867 0.287

Table 2: 100p5c Data

Clustering # Clusters NMI Purity Entropy

(DiANA) 5 1 1 0
single 5 1 1 0
complete 5 1 1 0
average 5 1 1 0
centroid 5 1 1 0

PoBOC 3 0.801 0.693 0.817
HPoBC 5 1 1 0

on the datasets 560p8c and 6Gauss. The problem lies
in the Silhouette scores, which fail to place the max-
imum (kopt) at the correct number of clusters. This
happens because the intra-class separation differs sig-
nificantly among the clusters. However, this problem
is not observed in the HPoBC algorithm, since Sil-
houette scores are used to evaluate the local cluster
tendency. This implies a more “relaxed” condition
in comparison to the use of Silhouettes for validat-
ing global clustering solutions. Thus, in these cases,
the HPoBC algorithm is advantageous with respect to
the classical hierarchical approaches, as evidenced by
NMI improvements around 10%.

5.3 Complexity considerations for large
databases

If denotingn, the total number of objects in the data
set, the complexity of the PoBOC algorithm is es-
timated in the order ofO(n2), similar to the clas-
sical hierarchical schemes. The complexity of the
Pole Based Hierarchical Clustering depends on fac-
tors such as the number and size of poles retrieved
at each step and the maximum number of recursive
steps necessary to obtain the final cluster solution.
The worst case in terms of the algorithm efficiency
would happen if a pole withn−1 elements were con-
tinuously found until all elements composed individ-
ual clusters. In this case, the algorithm would reach



Table 3: mixture of six Gaussians

Clustering # Clusters NMI Purity Entropy

DiANA 6 0.980 0.992 0.049
single 6 1 1 0
complete 6 1 1 0
average 6 1 1 0
centroid 6 1 1 0

PoBOC 3 0.606 0.693 0.817
HPoBC 7 0.982 1 0

a cubic complexityO(n(n+ 1)(2n+ 1)). In general
terms, if k is the number of recursive steps (levels
descended in the hierarchy) necessary to reach the
solution, the maximum complexity of the algorithm
can be approximated asO(k · n2). As for the anal-
ysed datasets, the algorithm needed 3 recursive steps
at most to achieve the presented results. It leads to a
quadratic complexity, comparable to the PoBOC al-
gorithm and the rest of hierarchical approaches.

Table 4: 1000p9c

Clustering # Clusters NMI Purity Entropy

DiANA 9 1 1 0
single 9 1 1 0
complete 9 1 1 0
average 9 1 1 0
centroid 9 1 1 0

PoBOC 5 0.837 0.634 0.637
HPoBC 11 0.993 1 0

Table 5: Mixture of 3 Gaussians

Clustering # Clusters NMI Purity Entropy

DiANA 2 0.847 0.812 0.375
single 2 0.847 0.812 0.375
complete 2 0.847 0.812 0.375
average 2 0.847 0.812 0.375
centroid 2 0.847 0.812 0.375

PoBOC 2 0.847 0.812 0.375
HPoBC 4 0.990 1 0

6 Conclusions

In this paper we present a hierarchical clustering
approach based on the Pole Based Clustering algo-
rithm (PoBOC), which only needs the objects in a
dataset as input, in contrast to other approaches that
require the number of clusters as input parameter. The
use of global object distances by PoBOC does not al-
low to differentiate between subclusters, specially if

the data is organised in a hierarchy. We therefore pro-
pose a hierarchical version of PoBOC, called HPoBC,
that recursively applies into each obtained cluster in
order to adapt the object distances to local regions and
accurately retrieve clusters as well as subclusters. Re-
sults obtained on five spatial databases have proven
the better performance of the new hierarchical ap-
proach with respect to the baseline PoBOC, also com-
parable or superior with respect to other traditional
hierarchical approaches. However, we need to em-
phasize the fact that the presented results have been
obtained on synthetic data sets with noticeable differ-
ences between intercluster distances. In future work
we further expect to validate the performance of the
HPoBC algorithm on real databases.
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