
DEPLOYING CONTENDER: EARLY LESSONS IN DATA, MEASUREMENT,

AND TESTING OF MULTIPLE CALL FLOW DECISIONS

D. Suendermann, J. Liscombe, J. Bloom, G. Li, R. Pieraccini

SpeechCycle Labs

New York City, USA

{david,jackson,jonathanb,grace,roberto}@speechcycle.com

ABSTRACT

In a recent publication [1], we laid out the mathematical

foundations for an optimization technique—Contender—

applicable to commercially deployed spoken dialog sys-

tems similar to what the research community would refer

to as a light version of reinforcement learning. In particu-

lar, we showed how Contender respects the notion of sta-

tistical significance and outperforms the common practice

in deployed systems to collect data until results appear re-

liable and then to draw final conclusions. While [1] was

a somewhat theoretical paper focusing on the proofs of

above statements and the derivation of the optimization al-

gorithm, the present work reports on lessons we learned

from live deployments in production systems. Altogether,

seven Contenders were installed in five different commer-

cial dialog systems processing 2.9 million calls over a pe-

riod of three to seven months. We have found that, depend-

ing on the location of the Contender in the application’s

call flow and the performance difference of the competing

alternatives, potentially large numbers of calls (hundreds

of thousands) need to be processed to determine a win-

ner. Furthermore, we have seen that Contender self-adapts

in the event that a previously under-performing option be-

comes the preferred option.

KEY WORDS

Contender, (commercial) spoken dialog systems, optimiza-

tion, production deployment

1 Introduction

Most of today’s commercial implementations of spoken di-

alog systems are based on the call flow paradigm, i.e., a

manually designed finite state machine whose nodes can

be seen as activities and arcs as transitions between these

activities. Activities include:

• interactions between the system and the user to gather

or provide pieces of information,

• interactions between the dialog system and other

systems in local or wide area networks (backend

databases, outage detection modules, line quality

check, mesh-up web services, telephony network,

etc.),

• any type of internal processing (running scripts, per-

forming calculations, making random or conditional

decisions, etc.).

The advantage of using a call flow over purely statistical

approaches to dialog management (such as MDP [2], or

POMDP [3]) is its transparency and predictability as well

as its support for extremely complex tasks involving thou-

sands of activities. Even very recent techniques such as

belief refinement [4] or belief recombination [5] have not

yet been shown to be applicable to real-world systems of

the complexity this paper refers to (see [6] for examples of

the dialog systems under consideration).

Almost every aspect and property of a call flow can be

considered a variable; for example, prompt wording, dialog

direction type (open, directed, or mixed), order of ques-

tions asked and/or actions taken, speech recognition thresh-

olds (sensitivity, confirmation, rejection), etc. The question

arises: What should the values of these variables be set

to? The general approach—and the only feasible one for

designers of complex commercial applications that require

quick deployment schedules—is to set most of the variables

based on the interaction designer’s gut feeling, past expe-

rience, “best practices” (i.e. strategies said to work best by

experts), or sometimes even random whim. Some exam-

ples of such choices are:

• The prompt is not to read “sorry, just say yes or no”

because this sounds too apologetic.

• The directed dialog will not have more than five

choices because cognitive science suggests that hu-

man memory cannot hold more than that many infor-

mational items.

• Ask first for the travel date and then for the departure

location.

• Lower the weight of the operator grammar rule be-

cause otherwise we falsely accept noise as operator

too often.

• Set the sensitivity to 0.6, the time-out to 4s, the rejec-

tion threshold to 0.2 and the confirmation threshold to

0.7.

In a recent paper [1], we presented a technique (Contender)

designed to overcome the arbitrariness of such decisions.

Contender (or what the academic community would call a

basic implementation of reinforcement learning) is a sim-

ple technique to experiment with a number of competing

paths in a spoken dialog system. By randomly routing cer-

tain portions of traffic to individual paths and computing

average rewards for each of the routes, the goal is to find

out which one performs best according to a parameterized

model of the probability density function of the reward.

From a designer’s point of view, a Contender is an

activity in the call flow that has one incoming transition

and several outgoing transitions leading to the set of com-

petitors for a specific Contender design. The decision of

which competitor to take at runtime is made by a random

generator that uses a set of weights influencing how much

traffic is routed to each of the competitors (usually, the ini-

tial weights are all equal). The Contender paradigm di-

verges from a more traditional approach that makes a call

flow change and then uses a post-mortem analysis to com-

pare the effect on call flow performance. The drawbacks

of such a traditional approach is that only one option may

be considered at a time and, more importantly, the fact that

the analysis is done on different user populations. If user

population is not controlled then one cannot be sure that an

observed increase in system performance was actually due

to the change made.

Hence, under the Contender paradigm the interaction

designer’s decision-making process is changed from:

1. brainstorming to come up with several felicitous

choices,

2. introspection about the optimal choice,

3. debating with colleagues about the optimal choice,

4. debating with the management about the optimal

choice,

5. debating with the customer about the optimal choice,

6. implementing a (potentially non-optimal) choice

to:

1. brainstorming to come up with several felicitous

choices,

2. implementing all choices,

3. letting the Contender paradigm decide the best choice,

given a reward function.

Conservatively, one would collect as many data points as

necessary to determine the statistically significant winner

of a Contender instance. Depending on how much traffic

the instance receives as well as how different the perfor-

mance of the competitors is, this collection could take a

very long time. For instance, in Section 3, we show an ex-

ample where, even after collecting data for more than half

a year, a final decision could not be made. As a solution

to this dilemma, in [1] we showed that dynamically adjust-

ing the weights influencing the load on every competitor

according to the probability p that the respective competi-

tor is the actual winner based on the observations collected

so far, is superior to waiting until statistical significance is

found.

Even though in [1] we were able to demonstrate the

internals of the Contender technique using paper and pen-

cil, the publication lacked hard experimental validation

on actual production data. To this end, the present pa-

per presents results of several Contenders we have imple-

mented into a number of commercial spoken dialog sys-

tems over the past half year.

Before going into details about the implemented Con-

tenders, we will describe the reward function by which we

evaluate Contenders in Section 2. In Section 3 we describe

the Contender configurations used as well as the applica-

tions they were implemented in. Section 4 reports results

and major findings.

2 Reward Function

The performance of commercial spoken dialog systems can

be expressed in many ways, though two of the most com-

mon metrics comprise:

1. Automation rate A (also referred to as task completion

rate)

2. Average handling time T

Both metrics have a direct impact on the customer’s bottom

line, where a customer is a business who deploys a spoken

dialog system to reduce costs incurred by employing hu-

man agents. The higher the automation rate, the higher the

savings to the customer and the lower the handling time,

the lower the expenses (e.g. hosting costs). These metrics

are so often used because they can be calculated without

human intervention by directly measuring the call outcome

and call duration. It is also generally believed that these

metrics correlate with user experience in that users gener-

ally prefer to complete a task and to do it in as short a time

as possible. In order to evaluate the performance of our

call flows, we have devised a reward function R that com-

bines both automation rate and average handling time with

a trade-off rate TA [7]. The value of the trade-off rate is

arrived at on a customer-by-customer basis depending on

the perceived relative importance of automation rate versus

handling time. Explicitly, the reward function is:

R = A −

T

TA

.

3 Systems and Contenders

We will now describe the seven Contender configurations

we implemented in four commercially deployed spoken di-

alog troubleshooting applications.

3.1 Cable TV troubleshooting, Provider X

Three Contenders were put into production at one of the

call centers of a cable TV provider. The dialog system in

question is a TV troubleshooting system able to remotely

reset cable boxes, help with bad picture quality or no pic-

ture at all, poor audio quality, the channel guide, the remote

control, error messages, as well as other technical prob-

lems.

C1. Call-reason disambiguation. Compare different strate-

gies (open-ended prompt, yes/no question, directed

menu) for collecting the technical problem the user is

having with their cable TV.

C1a. Please tell me the problem you are having in one

short sentence.

C1b. Are you calling because you’ve lost some or all

of your cable TV service? followed by C1a) if

the answer was ‘no’.

C1c. C1a + or you can say ‘what are my choices’

followed by a back-up menu if the answer was

‘choices’.

C1d. C1b followed by C1c if the answer was ‘no’.

C2. Box unplugging instructions. Explore the impact of

different troubleshooting techniques w.r.t. unplugging

a cable box.

C2a. The caller is asked to unplug the cable from the

back of the cable box.

C2b. The caller is asked to unplug the cable from the

back of the cable box or, alternatively, from the

wall.

C3. Box reboot. Explore the impact of manual or auto-

matic cable box rebooting.

C3a. The system performs an automated cable box re-

boot. If it fails the caller is asked whether he or

she feels comfortable doing a manual reboot. If

the answer is ‘no’ then the caller is escalated to

a human.

C3b. The system asks whether the caller feels com-

fortable doing a manual reboot. If he or she says

‘no’ the system performs an automated reboot.

3.2 Cable TV troubleshooting, Provider Y

The TV troubleshooting system of a second cable provider

with very similar capabilities as the one described in Sec-

tion 3.1.

C4. Opt-in. Explore the effect of phrasing differences in

persuading the user to engage with the automated sys-

tem (also referred to as opting-in).

C4a. To begin troubleshooting with me, the automated

agent, say ‘let’s start now’. [2 sec pause] Oth-

erwise, you can say ‘representative’.

C4b. To get started, say ‘continue’. [2 sec pause] If

at anytime you’d like to troubleshoot with a cus-

tomer service representative, just say ‘agent’.

3.3 Cable TV troubleshooting, Provider Z

The TV troubleshooting system of yet another cable

provider, again with very similar capabilities as the one de-

scribed in Section 3.1.

C5. No-picture troubleshooting order. Explore switching

the order of troubleshooting steps.

C5a. First have the caller reboot the cable box. If this

does not help then ask the caller to verify that the

input source is correctly set.

C5b. First verify that the input source is correctly set.

If this does not help reboot the cable box.

3.4 Internet troubleshooting

Our Internet troubleshooting spoken dialog system can help

callers resolve lost, slow, and intermittent Internet connec-

tions; fix e-mail sending and receiving problems; set up a

new account, regulate parental controls, fix a missing dial

tone for Voice-over-IP telephones, and the like.

C6. No-dial-tone troubleshooting. Try brute-force modem

reboot versus a strategy that reboots only when neces-

sary.

C6a. Reboot the modem.

C6b. First check the modem light pattern. If it in-

dicates that a modem reboot would resolve the

issue, reboot, otherwise, escalate the caller to a

human.

3.5 Voice-over-IP FAQ

Our Voice-over-IP application provides answers to fre-

quently asked questions concerning the digital phone ser-

vice of a provider. Possible questions concern voicemail

setup and usage, features such as call blocking, conference

calls, call forwarding, or no-dial-tone troubleshooting.

C7. Call reason disambiguation. Compare different strate-

gies (open-ended prompt versus directed menu) for

collecting the calling feature of interest to the caller.

C7a. Briefly tell me what you’re calling about today.

C7b. There are quite a few things I can help you with.

To start, just say ‘voicemail’ or ‘calling fea-

tures’. Or you can say ‘help me with something

else’. Other disambiguation menus follow.

4 Data, Results, and Interpretation

There are a few statistics that are of interest when report-

ing on the results of the seven aforementioned Contender

experiments. These are described below.

TA The trade-off parameter, where TA → 0 means that av-

erage handling time is considered most important and

TA → ∞ means that automation rate is most impor-

tant. TA is set in accordance with the customer’s or

account management’s preference.

time The number of days that a Contender has been in

production.

nTotal The total number of calls that a Contendered ap-

plication processed in a given time interval.

nContender The number of calls hitting a Contender. De-

pending on the location of the Contender in the call

flow, it will get hit more or less frequently. For exam-

ple, call-reason disambiguation is usually hit by most

calls, whereas no-dial-tone troubleshooting accounts

for only a small percentage of Internet calls.

Table 1 shows these statistics for all Contenders introduced

in Section 3. Furthermore, it shows the competitors’ av-

erage rewards per Contender (R) as well as the winning

probabilities of the respective competitors (p). The order

of the components of R and p is as introduced in Section 3.

E.g., for Contender C6, we read

(RC6a, RC6b) = (0.264, 0.206) and (pC6a, pC6b) = (1, 0)

as the reward of C6a is 0.264 and the reward of C6b is

0.206, and the probability that C6a performs significantly

better than C6b is 1.0.

Generally, we can see that among the implemented

Contenders, there are some statistically significant winners

(C1, C3, C4, and C6) and some that still await a final de-

cision (C2, C5, C7). In accordance with the usual prac-

tice in statistical hypothesis testing which is the founda-

tion of the mathematical model underlying the estimation

of p, we are speaking of statistical significance when the

winning probability exceeds 0.95. As discussed in our pa-

per [1], the fact that a statistically significant reward differ-

ence is found does not solely depend on the sheer amount of

data collected (C6 is found to be significant with less than

19, 000 calls, whereas C5 is still pending a decision with

more than 50, 000 calls). Another important factor is the

actual difference in performance of the competitors which

is true for other disciplines of statistical hypothesis testing

as well. When this difference is slim, many data need to be

collected before a clear winner can be identified.

Let us now briefly revisit the implemented Contenders

and report on the observed results in our deployed systems.

C1. The winning competitor C1b contains a yes/no ques-

tion followed by an open prompt if people respond

‘no’ to the former. However, in case they respond

‘yes’, which happens about half as often, the call rea-

son is known, and the actual troubleshooting can be-

gin. The fact that people call about loss of service far

more often than about anything else makes a yes/no

question upfront more effective than the other tested

competitors.

C2. The reward difference of the competitors is so

marginal (a difference of just 0.003) that a winner

could not yet be determined. The alternative unplug-

ging option (from the wall) does not seem to make

much difference.

C3. Asking whether callers feel comfortable manually re-

booting the cable box and acting according to their

response with either manual or automatic reboot per-

forms significantly better than a sequence of steps

starting with the (often unsuccessful) automatic re-

boot.

C4. Even though the competitors’ reward difference is

small (0.006), we found a definite winner due to the

substantial amount of collected data (almost 900, 000
calls).

C5. Apparently, whether to first reboot the cable box and

then check the input source, or vice versa, does not

make much of a difference. More data has to be accu-

mulated to determine the optimum.

C6. In this case, brute force application of modem reboot

outperforms an attempt at a targeted approach. The

result confirms a general assumption that a flow that

actively escalates callers will not perform better than

a flow that does not actively escalate callers when au-

tomation rate is part of the reward function.

C7. Interestingly, in the course of the 197 days this

Contender received live traffic at some point com-

petitor C7a significantly outperformed C7b (i.e.,

(pC7a, pC7b) = (1, 0)). According to the paradigm

explained in Section 1 we started routing 100% traffic

to competitor C7a. Later, however, the performance of

the application started declining. At this time, though,

no data were being accumulated for C7b since it was

found to perform significantly worse that C7a. Due

to the drop in performance of C7a, Contender’s built-

in re-adjustment mechanism started routing more traf-

fic to the C7a option so that an updated comparison

could be made. After collecting a sufficient amount of

new C7b data, the continuous analysis will be able to

conclude whether C7a is still winner or whether C7b

is taking over. In this sense, we have seen that Con-

tender acts in a self-healing mode and is able to react

to dynamically changing situations.

5 Conclusion

We have implemented seven Contenders in five commer-

cial spoken dialog systems that processed 2.9 million calls

Contender TA time nTotal nContender R p

C1 7166 223 313, 210 298, 098 (95.2%) (0.058, 0.064, 0.056, 0.060) (0, 1, 0, 0)

C2 7166 223 313, 210 43, 130 (13.8%) (0.222, 0.219) (0.77, 0.23)

C3 7166 223 313, 210 139, 937 (44.7%) (0.104, 0.116) (0, 1)

C4 ∞ 139 1, 584, 875 888, 240 (56.0%) (0.217, 0.211) (1, 0)

C5 5000 98 497, 923 51, 562 (10.4%) (0.331, 0.335) (0.21, 0.79)

C6 5000 100 459, 642 18, 913 (4.1%) (0.264, 0.206) (1, 0)

C7 ∞ 197 49, 961 47, 909 (95.9%) (0.237, 0.233) (0.79, 0.21)

Table 1. Contender statistics.

in three to seven months of deployment. The Contenders

covered a variety of topics including strategies for call-

reason disambiguation, troubleshooting instructions, and

opt-in prompting. We have seen that, often, large amounts

of data are necessary to determine the winning competitor

of a Contender, and that Contender is able to dynamically

react to changes of the performance distribution. We are

currently working on a fully automatic analysis and update

infrastructure that will allow us to incorporate substantially

more Contenders into our dialog systems. Ultimately, we

plan to replace human decision making by Contenders as

widely as technically possible.

References

[1] D. Suendermann and J. Liscombe and R. Pieraccini,

“Contender,” in Proc. of the SLT, Berkeley, USA,

2010.

[2] E. Levin and R. Pieraccini, “A Stochastic Model of

Computer-Human Interaction for Learning Dialogue

Strategies,” in Proc. of the Eurospeech, Rhodes,

Greece, 1997.

[3] S. Young, “Talking to Machines (Statistically Speak-

ing),” in Proc. of the ICSLP, Denver, USA, 2002.

[4] S. Young, J. Schatzmann, K. Weilhammer, and H. Ye,

“The Hidden Information State Approach to Dialog

Management,” in Proc. of the ICASSP, Hawaii, USA,

2007.

[5] J. Williams, “Incremental Partition Recombination for

Efficient Tracking of Multiple Dialog States,” in Proc.

of the ICASSP, Dallas, USA, 2010.

[6] K. Acomb, J. Bloom, K. Dayanidhi, P. Hunter,

P. Krogh, E. Levin, and R. Pieraccini, “Technical Sup-

port Dialog Systems: Issues, Problems, and Solutions,”

in Proc. of the HLT-NAACL, Rochester, USA, 2007.

[7] D. Suendermann and J. Liscombe and R. Pieraccini,

“Minimally Invasive Surgery for Spoken Dialog Sys-

tems,” in Proc. of the Interspeech, Makuhari, Japan,

2010.

