General notes

Conventions used throughout this exam

- $\Sigma_{\text {bin }}=\{0,1\}$.
- $\Sigma_{\mathrm{abc}}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$.
- $\Sigma_{\text {ASCII }}$ is the ASCII alphabet.
- $\Sigma_{\text {cap }} \subset \Sigma_{\mathrm{ASCII}}$ is the set of all capitals.
- $\Sigma_{\mathrm{dig}} \subset \Sigma_{\mathrm{ASCII}}$ is the set of all decimal digits.
- "Formally describe a language" means that a formal language is to be described in a set-theoretic way, e.g.

$$
L=\left\{w \in \Sigma_{\text {bin }}^{*}| | w \mid<5\right\}
$$

- Binary numbers are arbitrary words of $\Sigma_{\text {bin }}^{*}$ containing at least one symbol, however, they must not begin with 0 unless the word is 0 itself.
- If not noted otherwise, regular expressions are based on the operator set $\left\{+, \cdot,^{*},(),\right\}$, and the concatenation operator \cdot can be omitted.

Algebraic operations on regular expressions

1. $r_{1}+r_{2} \doteq r_{2}+r_{1}$ (commutative law)
2. $\left(r_{1}+r_{2}\right)+r_{3} \doteq r_{1}+\left(r_{2}+r_{3}\right)$ (associative law)
3. $\left(r_{1} r_{2}\right) r_{3} \doteq r_{1}\left(r_{2} r_{3}\right)$ (associative law)
4. $\emptyset r \doteq \emptyset$
5. $\varepsilon r \doteq r$
6. $\emptyset+r \doteq r$
7. $\left(r_{1}+r_{2}\right) r_{3} \doteq r_{1} r_{3}+r_{2} r_{3}$ (distributive law)
8. $r_{1}\left(r_{2}+r_{3}\right) \doteq r_{1} r_{2}+r_{1} r_{3}$ (distributive law)
9. $r+r \doteq r$
10. $\left(r^{*}\right)^{*} \doteq r^{*}$
11. $\emptyset^{*} \doteq \varepsilon$
12. $\varepsilon^{*} \doteq \varepsilon$
13. $r^{*} \doteq \varepsilon+r^{*} r$
14. $r^{*} \doteq(\varepsilon+r)^{*}$
15. $\{r \doteq r s+t \quad$ with $\quad \varepsilon \notin L(s)\} \longrightarrow r \doteq t s^{*}$ (proof by Arto Salomaa)
16. $r^{*} r \doteq r r^{*}$
17. $r^{*} \doteq \varepsilon+r^{*}$

1 Formal languages (6 pts)

Formally describe the following languages:
a) all words $w \in \Sigma_{\text {ASCII }}^{*}$ containing one million instances of the word million,
b) all binary numbers representing powers of 2 ,
c) all words adhering to the Base64 encoding scheme (i.e., all the words containing an arbitrary combination of alphanumeric characters or the special characters + or /; furthermore, words need to be terminated by a single occurrence of the special character $=$).

2 Regular expressions (9 pts)

a) Give a regular expression for all the words $w \in \Sigma_{\mathrm{abc}}^{*}$ containing no more than one instance of the character a, no less than one instance of b, and no more than one instance of c.
b) Give a regular expression for all the words $w \in \Sigma_{\text {bin }}^{*}$ not containing the substring 0000.
c) Specify a regular expression r representing the language $L(r):=L_{1} \cap L_{2}$ with

$$
\begin{aligned}
& L_{1}:=L\left((\varepsilon+1+10)^{*}\right) \\
& L_{2}:=L\left(10\left(1^{*} 00^{*}\right)^{*}\right)
\end{aligned}
$$

Hint: The intersection of the sets A and B is defined as

$$
A \cap B:=\{x \mid x \in A \wedge x \in B\}
$$

3 Algebraic operations (6 pts)

Prove that

$$
r^{*} r^{*} \doteq r^{*}
$$

For this task, use the algebraic operations listed in the General Notes section above. Indicate which rules you are using by referring to their ID (1-17) at every step you take.
Hint: Provide a proof for an arbitrary r including the case that $\varepsilon \in L(r)$.

4 Transforming NFAs into DFAs (6 pts)

Convert the following NFA into a minimized DFA:

$$
A=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle
$$

with

1. $Q=\{0,1,2,3,4\}$
2. $\Sigma=\Sigma_{\mathrm{bin}}$
3. $\delta=\{\langle 2,1,3\rangle\langle 4,1,3\rangle,\langle 2, \varepsilon, 4\rangle,\langle 3,1,0\rangle,\langle 4,1,1\rangle$,
$\langle 4, \varepsilon, 3\rangle,\langle 0,1,2\rangle,\langle 3,0,3\rangle,\langle 4, \varepsilon, 2\rangle,\langle 4, \varepsilon, 4\rangle\}$
4. $q_{0}=2$
5. $F=\{1,2,3,4\}$

5 Complements of regular languages (10 pts)

Prove that the regular expression

$$
r=\left(\mathrm{a}^{*} \mathrm{c}+\mathrm{b}\right)^{*} \mathrm{a}^{*}
$$

matches all strings $w \in \Sigma_{\mathrm{abc}}^{*}$ not containing the substring ab. Do so by
i) defining a regular expression r^{\prime} matching all strings that do contain the substring ab,
ii) determining the complete minimized DFA A representing r,
iii) determining the complete minimized DFA A^{\prime} representing r^{\prime}, and
iv) showing that $\operatorname{neg}(A)=A^{\prime}$.

6 Formal grammars (12 pts)

a) Define a formal grammar representing the language L specified in Task 7 .
b) Consider the grammar

$$
G=\left\langle V_{N}, V_{T}, P, S\right\rangle
$$

with

1. $V_{N}=\{X, Y, Z\}$,
2. $V_{T}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$,
3. $P: X \rightarrow \mathrm{~b} \quad 1$

$$
\begin{array}{ll}
X \rightarrow \mathrm{a} Y & 2 \\
X \rightarrow Z \mathrm{c} & 3 \\
Y \rightarrow \mathrm{a} Y & 4 \\
Y \rightarrow \mathrm{~b} & 5 \\
Z \rightarrow Z \mathrm{c} & 6 \\
Z \rightarrow \mathrm{~b} & 7
\end{array}
$$

4. $S=X$.
i. What is G 's highest type? Justify your answer.
ii. Formally describe the language $L(G)$.
iii. If G is not itself regular, define a regular grammar G^{\prime} with

$$
L\left(G^{\prime}\right)=L(G)
$$

7 The pumping lemma (4 pts)

Prove whether or not the following language is regular:

$$
L=\left\{v w v \mid v, w \in \Sigma_{\text {bin }}^{*}\right\} .
$$

