General notes

Conventions used throughout this exam

- $\Sigma_{\text {bin }}=\{0,1\}$
- $\Sigma_{\mathrm{abc}}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$.
- $\Sigma_{\text {ASCII }}$ is the ASCII alphabet.
- $\Sigma_{\text {cap }} \subset \Sigma_{\text {ASCII }}$ is the set of all capitals.
- $\Sigma_{\mathrm{dig}} \subset \Sigma_{\mathrm{ASCII}}$ is the set of all decimal digits.
- "Formally describe a language" means that a formal language is to be described in a set-theoretic way, e.g.

$$
L=\left\{w \in \Sigma_{\text {bin }}^{*}| | w \mid<5\right\}
$$

- Binary numbers are arbitrary words of $\Sigma_{\text {bin }}^{*}$ containing at least one symbol, however, they must not begin with 0 unless the word is 0 itself.
- If not noted otherwise, regular expressions are based on the operator set $\left\{+, \cdot \cdot^{*},(),\right\}$, and the concatenation operator • can be omitted.

Algebraic operations on regular expressions

1. $r_{1}+r_{2} \doteq r_{2}+r_{1}$ (commutative law)
2. $\left(r_{1}+r_{2}\right)+r_{3} \doteq r_{1}+\left(r_{2}+r_{3}\right)$ (associative law)
3. $\left(r_{1} r_{2}\right) r_{3} \doteq r_{1}\left(r_{2} r_{3}\right)$ (associative law)
4. $\emptyset r \doteq \emptyset$
5. $\varepsilon r \doteq r$
6. $\emptyset+r \doteq r$
7. $\left(r_{1}+r_{2}\right) r_{3} \doteq r_{1} r_{3}+r_{2} r_{3}$ (distributive law)
8. $r_{1}\left(r_{2}+r_{3}\right) \doteq r_{1} r_{2}+r_{1} r_{3}$ (distributive law)
9. $r+r \doteq r$
10. $\left(r^{*}\right)^{*} \doteq r^{*}$
11. $\emptyset^{*} \doteq \varepsilon$
12. $\varepsilon^{*} \doteq \varepsilon$
13. $r^{*} \doteq \varepsilon+r^{*} r$
14. $r^{*} \doteq(\varepsilon+r)^{*}$
15. $\{r \doteq r s+t \quad$ with $\quad \varepsilon \notin L(s)\} \longrightarrow r \doteq t s^{*}$ (proof by Arto Salomaa)
16. $r^{*} r \doteq r r^{*}$
17. $r^{*} \doteq \varepsilon+r^{*}$

1 Formal languages (6 pts)

Formally describe the following languages:
a) all words $w \in \Sigma_{\text {ASCII }}^{*}$ containing at least three instances of the string AC/DC,
b) all binary numbers divisible by 11 (binary),
c) an IP address (ignore the fact that the four decimal numbers contained in an IP address must not exceed 255).

2 Regular expressions (9 pts)

a) Give a regular expression for all the words $w \in \Sigma_{\mathrm{abc}}^{*}$ containing exactly two instances of the character a and at least one instance of b.
b) Give a regular expression for all the words $w \in \Sigma_{\mathrm{abc}}^{*}$ containing the substring ca exactly once.
c) List all the words of the language $L=L_{1} \cap L_{2}$ with

$$
\begin{align*}
& L_{1}=\left\{w \in \Sigma_{\mathrm{bin}}^{*}| | w \mid \leq 3\right\} \\
& L_{2}=L\left(00^{* *}+\left(1^{* *} 0\right)+0 \varepsilon 0+00^{*}(00(01))\right) \tag{1}
\end{align*}
$$

3 Algebraic operations (8 pts)

For this section, use the algebraic operations listed in the General Notes section above.
a) Simplify as much as possible:

$$
r=\left(\varepsilon^{*}+\left(\varepsilon+0^{*} 0+\left(\varepsilon 0^{*}\right)^{*} 0+\emptyset\right)^{*}\left(\varepsilon+\left(0^{*}\right)^{*}\right)+\emptyset 1+\left(\varepsilon^{*}\right)^{*}\right)^{*}+\varepsilon 1+\varepsilon+1+\emptyset 0
$$

b) Prove that

$$
(s+t)^{*} \doteq(s+t)^{*} s+(s+t)^{*}
$$

In subtask b), indicate which rules you are using by referring to their ID (1-17) at every step you take.

4 JFlex (6 pts)

Give regular expressions using the JFlex operator set matching
a) all input lines containing an IP address [see Task 2c) for further instructions],
a) all input lines containing the word two at least twice,
b) all input lines containing the word two at most twice.

5 Transforming NFAs into DFAs (8 pts)

Convert the following NFA into a minimized DFA:

$$
A=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle
$$

with

1. $Q=\{0,1,2,3\}$
2. $\Sigma=\Sigma_{\text {abc }}$
3. $\delta=\{\langle 0, \mathrm{a}, 2\rangle\langle 1, \mathrm{c}, 1\rangle,\langle 3, \mathrm{a}, 2\rangle,\langle 1, \mathrm{a}, 1\rangle,\langle 0, \varepsilon, 1\rangle$, $\langle 0, \mathrm{~b}, 1\rangle,\langle 1, \mathrm{c}, 0\rangle,\langle 0, \mathrm{c}, 3\rangle,\langle 2, \varepsilon, 1\rangle,\langle 3, \mathrm{~b}, 1\rangle\}$
4. $q_{0}=1$
5. $F=\{3\}$

6 Transforming regular expressions into FSMs (4 pts)

Determine a minimized DFA representing the same language as the regular expression

$$
r=\left(1^{*} 01\right)^{*} .
$$

7 Formal grammars (8 pts)

a) Define a formal grammar representing the language L specified in Task 8 .
b) Consider the grammar

$$
G=\left\langle V_{N}, V_{T}, P, S\right\rangle
$$

with

1. $V_{N}=\{A, B\}$,
2. $V_{T}=\{0,1,2\}$,
3. $P: A \rightarrow 0 \quad 1$ $A \rightarrow A B A \quad 2$ $B A \rightarrow 1 \quad 3$ $A B \rightarrow 24$
4. $S=A$.
i. What is G 's highest type? Justify your answer.
ii. Formally describe the language $L(G)$.
iii. If G is not itself regular, define a regular grammar G^{\prime} with

$$
L\left(G^{\prime}\right)=L(G)
$$

8 The pumping lemma (4 pts)

Prove whether or not the following language is regular:

$$
L=\left\{\mathrm{a}^{k} \mathrm{~b}^{l} \mid k, l \in \mathbb{I} \wedge l \leq k\right\} .
$$

