Formal Languages and Automata

David Suendermann

http://suendermann.com

Baden-Wuerttemberg Cooperative State University

Stuttgart, Germany

D. Suendermann Formal Languages and Automata November 15, 2012



General remarks

e The most up-to-date version of this document as well as auxiliary
material can be found online at

http://suendermann. com
e If you are running Windows, please install the complete UNIX emulation
package Cygwin, so everybody has the same tool set available:
http://cygwin.com
e A comprehensive (though German) script by my colleague Karl
Stroetmann covers many of the topics discussed in this lecture:

http://wwwlehre.dhbw-stuttgart.de/ " stroetma/Formale-Sprachen/

formale—-sprachen.pdf
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Outline

1. introduction

2. regular expressions
— compact description of sets of strings

— fundamental component of script languages (Perl, Python, grep, sed,
awk, etc.) and of most modern programming languages (.NET, SQL
Server 2008, Java, etc.)

3. the scanner generator JFlex

4. finite-state machines
...are able to detect regular expressions

5. formal grammars

D. Suendermann Formal Languages and Automata November 15, 2012



Outline (cont.)

6. context-free languages
most programming languages are context-free

7. Antlr
...a parser generator
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Example applications of formal languages and automata

e HTML and web browsers

e speech recognition and understanding grammars
e dialog systems and Al (Siri, Watson)

e regular expression matching

e compilers and interpreters of programming languages
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Alphabets

e An alphabet X is a finite, non-empty set of characters (symbols):

¥ ={c1,:* ,cn}. (1)
e examples:

1. The alphabet X};, = {0, 1} can express integers in the binary system.

2. The English language is based on the alphabet
dien = A“Hm.q... 9 Zy By e vNH“v.

3. The alphabet X agcir = {0, - ,127} represents the set of ASCII
characters [American Standard Code for Information Interchange]
coding letters, digits, and special and control characters.
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Alphabets: ASCII code chart

0 1 2 3 4 5 6 7 8 |1 9 A B C D E F
O|NUL | SOH |STX |ETX |EOT |ENQ |ACK |BEL | BS | HT | LF | VT | FF [ CR | SO | SI
1|DLE |DC1 |DC2 | DC3 =nh:=.=n SYN |ETB |CAN | EM |SUB |[ESC| FS | GS | RS | US
2 ! w | # S| % | &) ( ) | * | + | ¢ = . /
3| 0 1 2 3 4 5 6 7 8 9 : ’ < = > 7
4| @ A B C D E F G H I J K L M N 0
5| P 0 R S T U '} W X Y Z [ \ ] n -
6| - al|lb | c d| e | f| 9| h i j|l k| 1| m|n|o
71 P q r S t | u v |w | x| Y| z { _ } ~ | DEL
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Words

e A word of the alphabet X is a sequence (list) of symbols of 3:

w=cy* ¢, with c¢1,...,c, € 2.

e The empty word is written as

w = €.

e The set of all words of an alphabet X is represented by X*.

e In programming languages, words are also referred to as strings.

e examples:

1. Using the aforementioned set X;,, we can define the words
w; = 01100 and w; = 11001 with w;, w2 € X7, .

2. Using the aforementioned set X.,,, we can define the word

w = example with w € X7 .

(2)

(3)

(4)

(5)
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Length, individual symbols, and concatenations

e We refer to the length of a word w as |w

, €.8.:
w = example with we ¥’ — |w|l =T.

e We access individual symbols within words using the terminology
wlt] with <€ {1,2,-.--,|w|}.

e We define the concatenation of the words w;, w2, ..., w,, as
W = WiW3 *** Wy

e concatenation example:
w; =01 and ws =10 —

wiws = 0110 and wowy = 1001.

(6)

(7)

(8)

(9)
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(Concatenation) power of a word

e The nth power of a word w concatenates the same word n times:

w” =w" lw with w®=¢ and neln#DO0.

e In the following, we will be frequently using the set of integers

I={0,1,---}.

(10)

(11)
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Formal languages

e Given the alphabet X, we refer to the subset L C Y* as formal language.

e examples:

1. We define
Ly = {1wlw € B;,} U {0}. (12)
Then, L; is the set of all those words that represent integers using

the binary system (all words starting with 1 and the word 0. Hence,
we have

100 € Ly but 010 & L. (13)
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Formal languages: examples

2. We define the function
d : N.Q — 1

as the function returning the decimal-system representation of a word

in the language L;. This gives us

(a) d(0)
(b) d(1)

(c) d(wO)
(d) d(w1)

0,
1,

2d(w) for |w| > 0,
2d(w) +1 for |w| > 0.

(14)
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Formal languages: examples (cont.)

3. We define the language Lp as the language representing prime
numbers in the binary system:

Lp = {w € Li|d(w) € P}. (15)
One way to formally express the set of all prime numbers is
P={pell{tell3k €1: kt =p} = {1,p}}. (16)
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Formal languages: examples (cont.)

4. We define the language Lo C X7, gp as the set of all C functions
with a declaration of the form

char* f(char* x); (17)

that is, L~ contains the ASCII code of all those C functions
processing and returning a string.
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Formal languages: examples (cont.)

5. Using the alphabet X ascii+ = Yascit U {7}, we define the universal
language
L. = {ftzty} with (18)
(a) f € L¢,

(b) =,y € Eiscm
(c) applying f to x terminates and returns y.

e These examples show that formal languages have a wide scope.

e Testing whether a word belongs to L is straightforward whereas the
same test for Lp or Lo is more complicated.

e Later, we will see that there is no algorithm to do this test for L,,.
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Product of a formal language

e Given an alphabet X and the formal languages L, L, C X%, we define
the product

.N.\H . .N.\M = A"HSHSM_@CH - .N.\Hu Wo €& .N.\Muuv. AH©V
e example:
Using the alphabet X,,, we define the languages
L, = {ab,bc} and L, = {ac,cb}. (20)

The product is
L, - Ly, = {abac, abcb, bcac, bccb}. (21)
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(Concatenation) power of a language

e Given an alphabet %, the formal language L C X*, and the integer
n € I, we define the nth power of L (recursively) as

L™ =L"'.L with L° = {e}. (22)

e Using the alphabet 3, we define the language

L = {ab,ba}. (23)
This gives us

10 = {c},

L' = {e} - {ab,ba} = {ab,ba},

L? = {ab,ba} - {ab,ba} = {abab, abba, baab, baba}. (24)
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The Kleene star

e Given an alphabet ¥ and a formal language L C X*, we define the
Kleene star as

L*=|J L (25)
nel
e example:
Using the alphabet X,, we define the language
L = {a}. (26)
This gives us
L* = {a"|n € I}. (27)
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Formal languages: exercise

e Given the alphabet X,;, and the language

L = {1}.
a) Formally describe the language
L' = L*\{e}.
b) Formally describe the set
D = {d(w)|w € L'}.
c) Formally describe the language
L ={w|lw—1¢€L}.

d) Formally describe the language
L ={w|lw+1eL}.

(28)

(29)

(30)

(31)

(32)

Hint: Here, the operators + and — perform addition and substraction of

binary numbers.
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Outline

1. introduction

2. regular expressions
— compact description of sets of strings

— fundamental component of script languages (Perl, Python, grep, sed,
awk, etc.) and of most modern programming languages (.NET, SQL
Server 2008, Java, etc.)

3. the scanner generator JFlex

4. finite-state machines
...are able to detect regular expressions

5. formal grammars
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Regular expressions

e live demonstration:
- Vi

— extract e-mail or IP addresses from large numbers of files
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Regular expressions

e Using the alphabet X, we refer to the set of all regular expressions as R.
e We introduce a function
L:R— 2% (33)
assigning a formal language L(r) C X* to each regular expression r.

e Here, 2° denotes the power set of a set S.

o E.g.,
2%bin = 2101} — A“Hsv A“HOHJ A“HHCJ A“Ho“ HMT Awhv

and
2%6in = 2{£,0,1,00,01,...} (35)

= {0,{e},{0}, {1}, {00}, {o1},...
...{e,0},{e, 1},{e,00},{e,01},...

...{010,1110,10101},...}.
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The set of regular expressions

e The set of regular expressions (R) is defined as follows:
1. The regular expression () is associated with the empty language:
L(0) ={} with 0 € R. (36)
2. The regular expression ¢ is associated with the language containing
only the empty word:

L(e) ={e} with e € R. (37)
3. Each symbol in the alphabet X is also a regular expression:

ce X —ceE R;

L(c) = {c}. (38)
4. We define the infix operator “4” generating new regular expressions

by merging the languages of the regular expressions 7; and 7r5:
rn € Ryra € R — r1 + 712 € R;
L(ry + r3) = L(r1) U L(r2). (39)
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The set of regular expressions (cont.)

5. We define the infix operator generating new regular expressions

using the product of the languages representing the regular
expressions r; and 7rs:
rn e R,ro € R— 1r1 72 € R;
L(ry-7r2) = L(7r1) - L(7r2). (40)
6. We define the Kleene star of the language representing a regular
expression 7:
re R— r* € R;
L(r*) = L*(r). (41)
7. Brackets can be used to group regular expressions without changing
them:

r € R— (r) € R;
L((r)) = L(r). (42)
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Operator precedences

e To save brackets, we introduce the following operator precedences:
. “(", “)” (strongest)
1. “x”

. “.”
IV. “4” (weakest)

e example:
a+b-c*=a+4 (b-(c")). (43)
e For the sake of further simplicity, the product operator “.” can also be
omitted, e.g.:
a+b-c* =a+ bc. (44)
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Regular expressions: examples

e For all the following examples, we are using the alphabet

Yabe = {a,b, c}. (45)
1. The regular expression
r1 =(a+b+c)(a+b+c) (46)
describes all the words of exactly two symbols:
L(r1) = {w € 33, ||w| = 2}. (47)
2. The regular expression
ro =(a+b+c)la+b+c)* (48)
describes all the words of one or more symbols:
L(ri) ={w € Mm_oozé_ > 1}. (49)
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Regular expressions: examples (cont.)

3. The regular expression

rg = (b+ ¢)*a(b + ¢)* (50)
describes all the words containing exactly one a:
L(rs) = {w € 33,,.||{i € llw[i] = a}| = 1} (51)
where |S| refers to the number of elements in a set S.
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Regular expressions: exercise

a) Using the alphabet ¥,,. = {a, b, c}, give a regular expression r, for all
the words w € X7, = containing exactly one a or exactly one b.

b) Which language is expressed by r,7?

c) Using the alphabet X,,. = {a,b, c}, give a regular expression 7} for all
the words containing at least one a and one b.

d) Using the alphabet X},;, = {0, 1}, give a regular expression for all the
words whose third last symbol is 1.

e) Using the alphabet X;,, give a regular expression for all the words not
containing the string 110.

f) Which language is expressed by the regular expression

re = (14 €)(00%1)*0*? (52)
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Algebraic operations on regular expressions

1. 1 + r2 = ro + 1 (commutative law)

The symbol = means that the formal languages represented by these

regular expressions are identical, i.e.:

N.\Ae\.H |_| e\.Nv = .N.\Aeaw |_| e\.Hv. Amwv

This equivalence can be proven using the commutativity of merged sets:

.N.\Ae\.H -+ e\.Nv = N.\Aeauv U N.\Aeawv = N.\Aeawv U N.\Aeauv = .N.\Ae\.w -+ e\.Hv. Amm_.v

2. (r1 +17r2) +1r3 =11+ (r2 + r3) (associative law)
3. (ri7r2)rs = r1(ra2r3) (associative law)

4. Or = 0

b. er =r

6. 0+ r =

7. (r1 + r2)rs = rirs + rors (distributive law)

8. r1(r2 + r3) = riras + r17r3 (distributive law)
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Algebraic operations on regular expressions: proof of Rule 4

e We want to prove that

Or = 0. (55)

e According to Equation 53, to prove Equation 55, we have to show that
L(Or) = L(0). (56)

One way to do so is:
Eq.40

L(0r) "= L(0)- L(r) (57)
Ea36 o L(r)
B 19 {wiwz|w, € O, w2 € L(7)}
= 0
B30 1oy O
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Algebraic operations on regular expressions (cont.)

10. (r*)* = ¢

11. 0* =«

12. e* = ¢

13. r* = e + r*r

14. r* = (e +1r)*

rs+t with e ¢ L(s)} — r = ts* (proof by Arto Salomaa)

15. Ta
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Algebraic operations on regular expressions: example for Rule 15

e Using only the 15 algebraic operations, we want to prove that

00 = 00" with p€ R and e ¢ L(p). (58)
e Setting
r = p"p, (59)
s = o, (60)
t = o, (61)
we have
rs+t = p'o0+o0 (62)
5,7
("0 +¢€)o
1,13
o o
= T
e This fulfills the conditions of Rule 15, leading to the conclusion
0o =1r =1ts* = pp* with e & L(g) I (63)
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Algebraic operations on regular expressions: exercise

a) Simplify the following regular expression:

r=0ee4+0+1)"+(+1)(1+0)* +e. (64)

b) Prove the equivalence using only algebraic operations
r* =e+r’. (65)

c) Prove the equivalence using only algebraic operations
10(10)* = 1(01)*0. (66)

d) Prove the equivalence

(1 +¢e)(0(1 +¢€))*1* = (04 10)*1*. (67)
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Scanners

e A scanner is a tool to split an input text into individual tokens.

e E.g., the scanner used for the C compiler distinguishes the following
tokens:
1. key words (if, while)
2. operators (+, +=, <)

3. constants:

a) numbers (123, 1.23e-2)
b) strings in single quotes (’abc’)
c) strings in double quotes ("abc")

4. variable, function, type names
5. comments

6. white space (blanks, tabs, newline, carriage return)
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Scanners: example

e looking at the C expression

sum=3+2;

e This expression would be tokenized as

token token type

sum identifier

= assignment operator
3 number

+ addition operator

2 number

; end of statement
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JFlex

e JFlex is a scanner generator.

e Given a specification of token types, it automatically generates a scanner.

e Tokens types are specified by regular expressions.

e JFlex is a free, open-source software.

e JFlex is written in Java, i.e. it is platform-independent.

e The scanner JFlex produces is also a Java program.
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A scanner generator for the (hypothetical) language A++

Scanner
specification
for language A++
- lexical rule 1
- lexical rule 2
- lexical rule 3

((J)F)LEX

(Scanner generator)

A++ source code

Scanner code Hv Compiler Hv Scanner @ Tokenized A++
(JorC) (javac or cc) (class or exe) source code
. Suendermann Formal Languages and Automata November 15, 2012




JFlex: installation

e Download and install the JDK, e.g. from
http://jdk6. java.net/

e Download and install/unpack JFlex from
http://jflex.de

e If you are running Windows/Cygwin, make sure your environment
variables reflect the new installations.

e This can be done by editing the file profile which (depending on your

specific folder structure) can be found, for example, in

c:\cygwin\etc
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JFlex: installation (cont.)

e In particular, profile should contain entries similar to the following:

— to add the location of the JDK:
export PATH=$PATH:/cygdrive/c/Program\
Files/Java/jdk1.6.0_26/bin

— to add the location of JFlex:
export CLASSPATH=$CLASSPATH’;c:\jflex\1ib\JFlex.jar’

e To test the proper installation, download and unpack the file package
fla *.zip from
http://suendermann.com
and run the following command from a new Cygwin shell:

java JFlex.Main example.flex
javac Count. java

java Count input.txt

D. Suendermann Formal Languages and Automata November 15, 2012

41



JFlex specifications

e A JFlex specification consists of three parts:

1. the user code contains
* package declarations
* import commands

2. options and declarations

3. lexical rules

* Regular expressions describe strings the scanner is supposed to
recognize.

* It is also defined how the scanner processes these strings.

e These parts are separated by the string 77 at the beginning of a line.
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JFlex specifications: example.flex

10

11

12

13

14

15

16

17

18

Toto

Y%class Count
J%.standalone
%unicode

3t

int mCount = 0O;

h}

Yeof{

System.out.println("Total: " + mCount);

Jeof}

Toto

[1-9] [0-9]*

. [ \n

{ /* skip */

{ mCount += new Integer(yytext()); 1}

}
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JFlex specifications: example (cont.)

e generating the Java code of the scanner:

$ java JFlex.Main example.flex
Reading "example.flex"

Constructing NFA : 12 states in NFA
Converting NFA to DFA

5 states before minimization, 3 states in minimized DFA

Writing code to "Count.java"

e ...and compiling it:

javac Count. java
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JFlex specifications: example (cont.)

e Our example scanner adds up all integers found in an input file.

e An example imput (input.txt) reads

John has 3 apples and 5 oranges.

George bought 5 bananas.
How many fruits do they have altogether?

e applying the scanner to this input

java Count input.txt

e ... produces the output
Total: 13

45

November 15, 2012
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JFlex specifications: example (cont.)

e Let us discuss our example in more detail:

e Line 3
specifies the scanner class’s name (Count).

e Line 4
The option Ystandalone means that the generated program is not
component of a parser but an individual app (stand-alone scanner). This
is why the class Count comes with the method main().

e Lines7to9
Using the key words %{ and 7%}, we define the variable mCount. Here, we
can also define additional methods.

e Lines 11 to 14
Using the key words /eof{ and %eof}, we define a command to be
executed when reaching the end of file.
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JFlex specifications: example (cont.)

e Lines 17 and 18
contain the scanner rules. A rule has the form

regex{action}
— regex is a regular expression
— action is Java code to be executed when regex was found.
e Line 17

[1-9] [0-9]* matches an integer whose string can be accessed by the
function yytext ().

e Line 18
. |\n matches any character except newline (.) or (|) newline (\n). This
line is necessary since standalone scanners print all characters not
matched by a rule to stdout.
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Regular expressions in JFlex

e The minimal syntax of regular expressions as discussed before was
introduced to be able to show their equivalence to finite state machines
(as done later on).

e Practical implementations of regular expressions (e.g. in JFlex) use a
richer and more powerful syntax.

e Regular expressions in JFlex are based on the ASCII alphabet.

e We distinguish between the set of operator symbols
O={.,x+72,,-7,1,6), L1, {,}h<>/\,$"} (68)
and the set of regular expressions
l. c € ¥asc1i\O — cE€ R

N. :.:m .m
any character but newline (\n)
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Regular expressions in JFlex (cont.)

3. € {a,b,fyn,r,t, v} — \x € R
defines the following control characters
\a (alert)
\b (backspace)
\f (form feed)
\n (newline)
\r (carriage return)
\t (tabulator)
\v (vertical tabulator)

4. a,b,c € {0,--- ,7} — \abc € R octal representation of a
character’s ASCII code (e.g. \040 represents the empty space “ ")
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ASCII code chart

0 1 2 3 4 5 6 7 8 9 A B C D E | F
O|NUL | SOH |STX |ETX |EOT |ENOQ |ACK |BEL | BS | HT | LF | VT | FF | CR | SO | SI
1|DLE {DC1 |DC2 | DC3 [ DC4 [NAK | SYN |ETB |CAN| EM |SUB |ESC| FS | GS | RS | US
2 ! ol # | S| % | & ¢ ()| x|+ = | = | 7
3] 0 1 2 3 4 5 6 7 8 9 : ; < — > ?
4| @ A B C D E F G H 1 J K L M N 0
5] P 0 R S T U V W X Y z [ \ ] n -
6| - al|lb | c d| e | f| 9| h i jl k| 1| m|n|o
7P|l a9 r|s | t|u|jv ] w]|x|[|[Y]|z]|{ _ } | ~ |DEL
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Regular expressions in JFlex (cont.)

5. c€ 0O —\c€R
escaping operator symbols

6. 1,72 & R — T1T2 € R
concatenation

1. 1,72 mmlﬁu_ﬁ.w mm

infix operation using “|

rather than “+”

8. re R— rxc R

Kleene star

9. rec R—r+e R
variation of the Kleene star:

r+ = rr* (69)
10. re R—r7e€e R
optional presence:
r? =rle (70)
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Regular expressions in JFlex (cont.)

11.

12.

13.

14.

15.

16.

reRnel—r{inleR

reR;, mnel m<n—r{mmn}€R
concatenation of between m and n times r

reR— "reRr
r has to be at the beginning of line

receR—s1r$eR
r has to be at the end of line

r, 72 € R — r1/m2 € R
The same as 172, however, the method yytext () returns only the

contents of ;. The trailing context r, can be processed by the next

rule. For an example, see exampleTrailingContext.flex.

reR— (r) €R
Grouping regular expressions with brackets.
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Regular expressions in JFlex (cont.)

17.

18.

19.

20.

21.

Ranges
— [aeiou] = alelilolu
— [a-z] = alblc]| ++- |z

— [a-zA-Z0-9]: alphanumeric characters
— [0-9]: all ASCII characters w/o digits

[l ER
empty space
["] €ER
any character

w E A“HMUkPmOHH/A/V :HVHV* — "w" € R
verbatim text

reR— 'reR
negation
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Regular expressions in JFlex (cont.)

22. re R— "re R
The upto operator matches the shortest string ending with r.

23. predefined character classes
[:jletter:] matches characters c for which calling the Java
method Character.isJavaldentifierStart(ec) returns true
[:jletterdigit:] «—— isJavaldentifierPart()
[:letter:] «—— isLetter()
[:digit:] <« isDigit()
[:uppercase:] «—— isUppercase()

[:lowercase:] «——— isLowercase()
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Regular expressions in JFlex: precedences

. “(”, “)” (strongest)

—— n-*cc -l_l- -\V-

il. “”
IVV. concatenation

V. “|” (weakest)

example:

laxb | c+de

(C(t(ax))b) | (((c+)d)e))
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Regular expressions in JFlex: examples

1. [a-zA-Z] [a-zA-Z0-9_]*
typical variable names in programming languages

2. 0| [1-9][0-9]x
integer

3. \/\/.x

C++ comment (one-liner)

b.- :\*: _A_”)”_* :*\: _”)”_*v :*\:

C commment

m- :\*: ~ :*\:
C comment (using the upto operator)

@. ! A_eaH_ _e\.Nv
intersection of two regular expressions using de Morgan’s law
1 N\ To < |_A|_e\.H V JﬁMv

example: r; =[ab]{3}, ro = a*

(71)
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JFlex: exercise

1. write a JFlex program removing C and C++ comments from an input

source
2. write a JFlex program extracting the plain text from an HTLM source

3. write a JFlex program computing average exam scores per student from
a score sheet (exam.txt):

Exam: Formal Languages and Automata

Exercise: 1. 2. 3. 4. .
Ronald Reagan: 9 12 10 6 6 O
Arnold Schwarzenegger: 4 4 2 O

9 9

James Dean: 12 12

using the formula

sumPoints ]
avgScore = 5 — 4 - with maxPoints = 60. (72)
maxPoints
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Outline

1. introduction

2. regular expressions
— compact description of sets of strings

— fundamental component of script languages (Perl, Python, grep, sed,
awk, etc.) and of most modern programming languages (.NET, SQL
Server 2008, Java, etc.)

3. the scanner generator JFlex

4. finite-state machines
...are able to detect regular expressions

5. formal grammars
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Finite-state machines: introduction

e We will introduce finite state machines (FSMs) and show how a regular
expression can be converted into an FSM and the other way around.

e We will see that FSMs can be deterministic or non-deterministic which
can be transformed into each other.
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FSMs: purpose

e The purpose of the FSMs discussed in the following is
— to read a string and

— to decide whether the string is element of the language represented
by the FSM.

e The output of these FSMs is binary: true or false.

e As its name implies, FSMs have a finite (i.e., fixed) number of states.
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FSMes: working principle

1. In the beginning, the FSM is in an initial state.

2. For every input c € %, the FSM changes to a new state depending on c
and the current state.

3. After reading the entire input string, the FSM is in a certain state. If this
state belongs to the set of so-called final (or accept) states the string is
element of the accepted language.
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FSMs: example

e a simple FSM recognizing the regular expression a*ba*

a a

e This FSM has two states, 0 and 1.

e 0 is the initial state (with an arrow “pointing at it from anywhere”
(Sipser, 20006))

e 1 is a final state (represented as a double circle)
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FSM: formal definition

e An FSM is a quintuple
A= AQQMUQ%vQOQNﬂv

with the following components

1. Q is the finite set of states.

2. X is the input alphabet.

(73)

3. 6: Q X ¥ — QU {Q} is the state-transition function. If §(q,c) = ,
the FSM announces an error, i.e. rejects the input.

4. go € Q is the initial state.

5. F C Q@ is the set of final states.
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FSM: formal definition: example

e Using the above mentioned example, the FSM is expressed as

A=1(Q,%,8,q0, F) (74)
with
1. Q = {0,1}
2. ¥ ={a,b}
3. 6(0,a) =0;0(0,b) =1;6(1,a) =1;6(1,b) = N
4. go =0
5. F = {1}
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Language accepted by an FSM

e In order to formally define the language accepted by an FSM, we
generalize the state transition function 0 to a function

0 :Q x X — QuU{Q} (75)
whose second argument is a string.
e We define
- 6'(q,e) = q
0’(d(g,c),v) if d6(qg,c) #Q

— %\Aﬁu Sv e .
Y otherwise

with w=cv;c € ;v e X* for |w| >0
e E.g., we can show that 6’(0,aba) = 1 for the above example.

e the language accepted by an FSM A = (Q, X, 9, qo, F') (aka regular
language) is defined as
L(A) = {w € ¥*[6'(qo0, w) € F}. (76)
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FSM: exercise

1. We are given this graphical representation of an FSM A:

a) Give a regular expression describing L(A).

b) Give a formal definition of A.
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FSM: exercise (cont.)

2. Give
— a regular expression,
— a graphical representation, and
— a formal definition

of a deterministic FSM A whose language L(A) C {a,b}* contains all
those words featuring the substring ab

a) at the beginning,
b) at arbitrary position,

c) at the end.
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FSM: determinism

e So far, we have discussed deterministic FSMs, i.e. every state has exactly
one transition for every possible input.

e We also refer to deterministic FSMs as deterministic finite automata
(DFAs).

e Often, DFAs can be rather complex as in the following example accepting
a language specified by the regular expression

(a4 b)*b(a+ b)(a+ b) (77)
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FSM: example of a DFA
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FSM: determinism (cont.)

e We can simplify such an FSM when we permit that an input can lead to
— one transition,
— multiple transitions, or
— no transition.

e That is, an FSM selects its next state from a set of states where the set
depends on the current state and the input.

e We call this a non-deterministic FSM or non-deterministic finite
automaton (NFA).

e For the same example with the regular expression

(a+b)*b(a+b)(a+ b) (78)
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FSM: example of a NFA

e ...we get the following NFA:

e This FSM is non-deterministic since, in state gg with the input b, the
FSM has to “guess” the next state.

e An example string abab can be read in three ways:

H. do _Nv do _hv do _Nv do _hv do A‘..m-m_-h—\mv
N. do _Nv do _hv do _Nv do _hv qdi1 A‘..m-m_-h—\mv

3. qo > qo > q1 > g2 > g3 (success)
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NFA: formal definition

e Even though NFAs seem to be based on guesswork, in the following, we
will see that they are as powerful as DFAs.

e For the formal description of an NFA, we introduce the spontaneous
transition, i.e., state changes without reading an input symbol:
a1 — qz. (79)
e An NFA is a quintuple
A =(Q,%,9,q0, F) (80)
with the following components
1. Q is the finite set of states.
2. X is the input alphabet.
3. disarelationon Q X {X U {e}} x Q. l.e,
0 C Qx{X¥U{e}} xQ (81)
4. go € Q@ is the initial state.
5. F C (@ is the set of final states.

D. Suendermann Formal Languages and Automata November 15, 2012 72




NFA: formal definition: example

e The above mentioned NFA example is expressed as

A=(Q,%,0,q0, F) (82)
with
1. Q@ ={q90,91,92,93}
2. X ={a,b}
3. § = {{(q0;2,90), (905D, q0), (q0; b, q1); (q1, 3, q2), (q1, b, g2),
(g2,3,4q3),(q2,b,q3)}
4. qo = qo
5. F = {qs}
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NFA: exercise

e Given an FSM A whose language L(A) C {a,b}* contains all those
words featuring the substring aba, what is

— a regular expression representing L(A),
— a graphical representation of A,

— a formal definition of A?
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Equivalence of DFA and NFA

e Now, we want to show that an NFA A can be transformed to a DFA
det(A) sharing the same language, i.e.

L(A) = L(det(A)) (83)
e The idea is that det(A) computes the set of all the states A can assume.

e A set M of states of A is a final state of det(A) if M contains a final
state of A.

e To show this, we define three auxiliary functions.
e First, the ¢ closure
ec: Q — 29 (84)

returns the set of all those states, the NFA can change to by means of
an ¢ transition coming from state q.

e Formal definition of ec:

q € ec(q); (85)
p € ec(q) A (p,e,T7) € — 1€ ec(qg). (86)
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¢ closure: example

e an example NFA with ¢ transitions:
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e closure: example (cont.)

e calculating the ¢ closure for all states:

— ec(qo)
— ec(q1)
— ec(qz)
— ec(q3)
— ec(qa)
— ec(gs)
— ec(gs)
— ec(qr)

{90, a1, 492},

{a1},

{a:=},

{as}

{as},

{as, a7, 90,91, 92},
{46, a7, 90,91, 92}
{47, q0,q1,q2}-
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The second auxiliary function

e Second, we transform the relation ¢ into a function
0*:Q x X — 29, (87)

e Here, 6*(q, c) returns the set of all those states, the NFA can change to
coming from state g reading the symbol ¢ followed by any number of ¢
transitions.

e Formally, we have

5 (q1,¢) = U ec(qz)- (88)

92€Q: (q1,¢,92)€ES
e examples (based on the above NFA):
1. 6"(q0,2) = {},
2. 6*(q1,b) = {g3},
3. 6"(g3,2) = {95,497, 90,91, 92}
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The third auxiliary function

e Third, we transform the function 0* into a function
A*:29 x 3 — 29, (89)
e Here, A*(M,c) returns the set of all those states, the NFA can change
to coming from a set of states M reading the symbol c followed by any

number of £ transitions.

e Formally, we have

A*(M,e) = | 8*(g;0)- (90)
qeM

e examples (based on the above NFA):
1. D*AA"HQOQ qi, QNH“Jm.v — A“HQNLJ
2. D*AA"HQwH“J m.v — A“HQmu q7,40, 41, QMHT

3. A*({gs},b) =1}
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Equivalence of DFA and NFA: formal definition

e We are now ready to transform an NFA A into a DFA:
det(A) = (29,3, A*, ec(qo), F') (91)
with
F={Mec2°MnF #{}}. (92)

A

e That is, the set of final states F' is the set of all subsets of () containing
a final state.
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Equivalence of DFA and NFA: example

e returning to the example FSM expressing the regular expression

(a+b)*b(a+b)(a+ b) (93)
e The initial state:
So = ec(qo) = {go}- (94)
e The state transition function: Starting with the initial state...
- A*({40},2) = {q0} = So.
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Equivalence of DFA and NFA: example (cont.)

e exploring the set of states...
- 81 = A*({g0},b) = {q0,q1}
- S2 = A*({q90,91},2) = {qo0,q2}-
- 84 = A*({q0,q1},b) = {q0,q1,q2}
- S3 = A*({q90,92},2) = {qo0,93}-
- S5 = A*({90,92},b) = {q0, 91,93}
— Se¢ = A*({q0,91592},2) = {90,492, q3}-
- S7 = A*({90,91,92},b) = {90, 91, 92,93}
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Equivalence of DFA and NFA: example (cont.)

e transitions with repetitive states...
- A*({q90,q3},2) = {g0} = So.
- A*({q0,93},b) = {g0,q1} = Si1.
- A*({q90,91,93},2) = {q0,q2} = S-.
- A*({90,91,93},b) = {q0,q1,q2} = Sa.
— A*({90,92,q3},2) = {90, q3} = Ss.
- A*({q90,92,93},b) = {q0,q1,q3} = Ss.
- A*({90,91,92,93},2) = {qo0, 92,93} = Se-
- A*({q90,91,92,q3},b) = {q0,q1,92,93} = S7.
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Equivalence of DFA and NFA: example (cont.)

e Now, we can define the DFA
det(A) = (Q, X, A*, So, F) (95)
with
— the set of states
Q = {So,--* 57}, (96)

— the state transition function A* as summarized as follows:

A* || So | S1 | S2 | S3 | Sa | S5 | Se | S7

— and the set of final states (each DFA state containing the NFA final
state g3)

F = {83, 85, S¢, S7}. (97)
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Equivalence of DFA and NFA: example (cont.)
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Equivalence of DFA and NFA: exercise

e We are given the following NFA A:

a) Determine det(A).

b) Draw det(A)’s graph.

c) Give a regular expression representing the same language as A.
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Transformation of regular expressions into NFAs

e Given a regular expression r, we want to derive an NFA A(7r) accepting
the same language:

L(A(r)) = L(+). (98)

e Deriving the transformation rules, we will be using two properties of
A(r):
— There are no transitions to the initial state.

— There are no transitions from the final state.

e Assuming X is the alphabet which r is based on, we define

1. A0) = ({90,901}, %, {}, g0, {a1 })

—() (W
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Transformation of regular expressions into NFAs (cont.)

2. A(e) = Haor 01}, %, {0, a1} @os {ar})
Co =)

3. A(c) = ({0, a1}, 3, ({0 € a1)}, o, {ar})
Co =)

4. A(rirz) = (Q1 U Q2,%,{{qg2,€,q3)} U d1 U d2,q1,{gs}) with

kﬁ?auv = AQT MU“ %f qi, Aﬂmwv“
A(rz) = (Q2, X, 02,93, {g4})-
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Transformation of regular expressions into NFAs (cont.)

4. kﬁAe\.He\.wv AnO:H.v

5. kﬁAﬁH + ﬁwv — AAQOq va U @H U @mq MUw
AAQOw €, QHY AQOV €, Qqu AQNw €, Qme AQNT €, vaw U %H U %Nu do, AQva

A(rl)

ma em
e £ A(r2) . 6
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Transformation of regular expressions into NFAs (cont.)

6. kﬁ?a*v — AA“HQOQ Qwuv U @QMUQ
A"HAQOQ €, QHVu AQNQ €, QHVQ AQou €, Qqu AQNQ €, Qwvv U %u q0, A"HQwH“vv with
kﬁAﬁv — AQQMUQ%v QHgA"HQMva.

Note: In Transformation Rules 4 and 5 (and often also 6), states
connected by ¢ transitions can be merged.
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Transformation of regular expressions into NFAs: exercise

e Determine an NDA accepting the same language as the regular

expression
(a4 b)a*p (99)
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Transformation of DFAs into regular expressions

e We have learned how to convert

— regular expressions — NFAs,

— NFAs — DFAs.

e To complete the circle, we now investigate how to convert

— DFAs — regular expressions.

e That is, given an DFA A, we want to derive a regular expression r(A)
accepting the same language:

L(r(A)) = L(A). (100)
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Transformation of DFAs into regular expressions: formal derivation

e The DFA to be converted is of the form

A= AQQMUQ%v Qoowﬂv with Q = A"HQHQ... uﬂzw. AHOHV
e Now, we introduce the auxiliary regular expression
ﬁQaVGwHuﬁmV with k€ A“HOQ see, M+ waﬁfﬁw €Q AHOMV

being the regular expression representing all those strings that make A
change from p; to p without visiting any state g; with ¢+ > k.
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Transformation of DFAs into regular expressions: formal derivation (k£ = 0)

e According to the above definition of r(¥)(p,, p2), for k = 0, we are not
allowed to visit any state changing from p; to p-.

e Hence, the only way to change from p; to ps is to read a single symbol
as expressed by the state transition function J:

ci+---+c+e for py =ps

(103)
ci1+-+-++c+0 otherwise

ﬁﬁov Aﬁuu ﬁmV —

with ¢1,...,¢ € {c € X|d(p1,¢c) = p2}
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Transformation of DFAs into regular expressions: formal derivation (k£ > 0)

e For k£ > 0, we have
r®(pi,p2) = r* Y (pi,p2) +
ﬁQAICAﬁT qr—1) *
AﬁAwICAQwIT leuvv* y
r*~1 (gr_1, p2)

e This formula recursively expresses 7(¥) by reference to r(*—1) whose only
difference is the permission of g,_1 as intermediate state.

e Equation 104 expresses the transition from p; to ps without visiting
qr—1 (and g, qr41, etc.)

e Alternatively, A may change
— first from p; to qx—1 (without visiting qx, gx+1, etc.) (Equation 105),
— then arbitrarily often from q;_1 to g1 (without...) (Equation 106),
— and finally from gi_; to ps (without...) (Equation 107).
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Transformation of DFAs into regular expressions: formal derivation (cont.)

e Naturally, the regular expression imposing no restriction on which
intermediate states can be visited is

eaGqu ﬁwv — eaAzl_‘HvCquﬁNv. ﬁ.omv

e Considering
— the initial state g9 and
— the set of final states F = {t1,:--- ,{,,},

we can define the regular expression describing exactly those strings for
which A changes from its initial to one of its final states:

ﬁAkﬁv — ﬁAQog &Hv + e+ ﬁAQOQﬁSV. AHO©V
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Transformation of DFAs into regular expressions: exercise

e Determine a regular expression accepting the same language as this DFA:
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Minimization of DFAs

e Given the DFA

A=(Q,3%,d8,q0, F), (110)
we want to derive a DFA

A" =(Q7,%,67,q0,F7), (111)
accepting the same language, i.e.,

L(A)=L(A™) (112)

for which the number of states (elements of Q) is minimal.

e The idea is to identify the set V comprising all the pairs of distiguishable
states.

e That is, being in the states p or g, respectively, there is a symbol ¢ which
makes the DFA change to the states s and t, respectively, which, in turn,
are distinguishable.

e Formally, we have

%Gf Ov — S, %AQv Ov =t, Amuﬂv c V. AHva
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Minimization of DFAs: the algorithm

1. We initialize V' with all those pairs for which one member is a final state
and the other is not:

V={{paeQxQpeFNqgF)V(pg€FANqgeF)}. (114)

2. While we can find a pair of states (p, q) and a symbol ¢ such that the
states d(p, c) and d(q, c) are distinguishable, we keep adding this pair
and its reverse to V:

while(I({p,q) € Q X Q : c € X : (§(p,c),d(qg,c)) € V A{p,q) &€ V) (115)

{
V=VU{p,aq),{qaDp)}
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Minimization of DFAs: special cases

a) If we have a pair of states (p, q) and attempting to read the symbol ¢
results in a reject ({2) for one of the states and does not for the other, p
and g are distinguishable:

d(p,c) =2 A 6(g,c) #2 V 8(p,c) #2 A d(g,c) = (116)
can be added to the condition in Eq. 115.

b) If we have a pair of states (p, q) and reading all possible symbols c € X
results the same successor states p and g are indistinguishable:

(P,q) €EQ XQ:VeeX:6(p,c)=0d(q,c) = (p,q),{q,p) € V. (117)
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Minimization of DFAs: example

e We want to minimize this DFA with 5 states:
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Minimization of DFAs: example (cont.)

e This is the formal definition of the DFA:
A =(Q,%,6,q0, F) (118)
with
Q = {90, 91, 92,95, 94}
> ={a,b}
0 = ... (skipped to save space, see graph)

do = 9o
F = A"HQwQ Q%H“v
e For the sake of practicality, we represent the set V by means of a

two-dimensional table with the elements of () as columns and rows and
V'’s elements as cells featuring the symbol X.

o & b

e Analogously, we represent state pairs that are definitely not members of

V using the symbol o.
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Minimization of DFAs: example (cont.)

1. By determining all combinations of states in F' = {q3,q4} and
Q\F = {qo0,91,q2}, we get the following initial state of V:

dgo | 91 | 92 | 43 | 44

do X X
adi X X
gz X X

gs || X | X | X
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Minimization of DFAs: example (cont.)

2. Furthermore, the cases (q;,q;)|t € {0,--: ,4} are naturally

indistinguishable since they are identical:

do

qi

qz2

da

do

qi

g2

X | X | X

dqs

d4s
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Minimization of DFAs: example (cont.)

3. Now, we iterate over all the remaining state-pairs and symbols. In doing
so, we can skip the cases (q;,q;)|i,7 € {0,:---,4};7 < ¢ due to the
symmetry of the distinguishability of states.

— 6(qo,2a) = q156(q1,2) = q3;(q1,93) € V — (q0,91),(q1,90) €V
— 0(qo,2) = q156(q2,2) = q435{(q1,94) € V — (q0,92),(q2,90) €V
— 0(q1,2) = ¢3;0(q2,2) = q45(q3,94) € V (as of yet)

d(q1,b) = q3;6(q2,b) = qa5(q3,q4) € V (as of yet)
— 0(q3,2) = q156(q4,2) = q25(q1,q2) € V (as of yet)

d(g3,b) = q1;0(q4,b) = q2;(q1,q2) € V (as of yet)
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Minimization of DFAs: example (cont.)

e Since no other distinguishable state pairs could be found, we fill empty
cells with o:

do O X X

@)
@)
X | X | X
X | X | X

qdi X

q2 X O O

qs X X X O o
qa X X X O o

e From the table, we can derive the following (non-diagonal,
non-symmetrical) indistinguishable state pairs:

a) (q1,4z),
—uv AQwQ Q%v.
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Minimization of DFAs: example (cont.)

e This is the minimized DFA after merging indistinguishable states:

a,b

a, b
—(w) C (=)

a,b
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Minimization of DFAs: exercise

e Derive a minimal DFA accepting the language
L(a(ba)™). (119)
e Hint: Solve the exercise in three steps:
1. Derive an NFA accepting L.

2. Transform the NFA into a DFA.
3. Minimize the DFA.
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Equivalence of regular expressions

e Earlier in this lecture, we have seen that there can be multiple regular
expressions describing the same language.

e We have also learned that using algebraic transformation rules to prove
equivalence of regular expressions can be very difficult or even impossible.

e In the following, we will learn a straight-forward algorithm proving
equivalence of regular expressions based on FSMs.

e According to the textbook of Hopcroft and Ullman /ntroduction to
Automata Theory, Languages, and Computation (1979), the algorithm
involves four steps.
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Equivalence of regular expressions: algorithm

1. Given the regular expressions r; and r5, derive NFAs A; and A,
accepting their respective languages:

.N.\Ae\.Hv = .N.\AKQHV and .N.\Ae\.wv = .N.\Akﬁwv. AHMOV
2. Transform the NFAs A; and A, into the DFAs D; and D-.
3. Minimize the DFAs D, and D yielding the DFAs M; and M.

4. If r{ = ro, then M; and M5 must be identical except for possible
differences in state names.

Note: If you can show equivalence in any intermediate stage of the algorithm,
this is enough to prove 7, = r5 (e.g. if A3 = A,).
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Equivalence of regular expressions: exercises

e Reusing two exercises from an earlier section, prove the following
equivalences:

a) 10(10)* = 1(01)*0,

b) (14 €)(0(L +€))*1* = (0 + 10)*1*.
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Outline

1. introduction

2. regular expressions
— compact description of sets of strings

— fundamental component of script languages (Perl, Python, grep, sed,
awk, etc.) and of most modern programming languages (.NET, SQL
Server 2008, Java, etc.)

3. the scanner generator JFlex

4. finite-state machines
...are able to detect regular expressions

5. formal grammars
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Formal languages vs. formal grammars

e In the introduction, we have learned that a formal language is a set of

words composed of symbols of a given alphabet.
e We have learned about several ways to describe (words accepted by) a
language:
— regular expressions,
— DFAs,
— NFAs.
Yet another way to do so are

— formal grammars.
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Formal grammars

e According to Noam Chomsky (*1928), a grammar is a quatruple
G = (Vn, Vr, P, S) (121)
with
1. the set of non-terminal symbols Vj;,
2. the set of terminal symbols Vr,

3. the set of production rules P of the form

a— 3 (122)
with a € V*VNV*, 8 V*,V =VNUVr
4. the distinguished start symbol S € V.

e For the sake of simplicity, we will be using the short form

B, replacing a — 3 (123)

o — B

a — fn
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Formal grammars: example

e We want to define a grammar
G = (Vn, Vr, P, S) (124)

to describe identifiers of the C programming language.

e that is, alpha-numeric words which must not start with a digit and may
also contain an underscore (_)

e We have
1. Vv ={I,R, L, D} (identifier, rest, letter, digit),
2. Vi ={a,--- ,2,A,+++,Z,0,---,9,_},

3. P: I — LR| R|L|
R — LR|DR| R|L|D|
L — a|l---|z|A]---]|Z
D — 0]---|9

4. S =1.
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Formal grammars: derivation

e We can define the operation of grammars by means of derivations.

e Given the grammar
G = {(Vn,Vr, P, S), (125)
we define the relation
r =gy iff Ju,v,p,g € V*: (x = upv) A(p — q € P) A (y = uqv)(126)
pronounced as “G derives in one step”.
e We also define the relation
xr =g y iff Jwo, ..., w, (127)
with wg = xz, w,, = Yy, w;_1 =g w; fori € {1,.--- ,n}

pronounced as “G derives in zero or more steps’ .

D. Suendermann Formal Languages and Automata November 15, 2012 116



Formal grammars: derivation example |

e We are given the grammar

G = (Vn, Vr, P, S) (128)
with
1. Vv = {S},
2. Vr = {0},
3. P: §—05 1
S —0 2
4. S = 6S.

e Derivations of G have the general form

S =1 08 =1 008 =1 -+ =1 0" 18 =5 O". (129)

e Apparently, the language accepted by G is
L(G) ={0"|n € I;n > 0}. (130)
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Formal grammars: derivation example Il

e We are given the grammar

G = (Vn, Vr, P, S) (131)
with
1. Vv = {S},
2. Vr = {0,1},
3. P: §—051 1
S — 01 2
4. § = S.

e Derivations of G have the general form

S =1 0S1 =1 00811 = -++ =7 0" 1S1™ 1 =, 0™1". (132)

e Apparently, the language accepted by G is
L(G) = {0"1"|n € I;n > 0}. (133)
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Formal grammars: derivation example Ili

e We are given the grammar
G = (Vn, Vr, P, S) (134)
with
1. Vv ={S,B,C},
2. Vpr =4{0,1,2},
3. P : S — 0SBC 1
S — o0BC 2
CB — BC
0B — 01

&~ W

1B — 11
1C — 12
2C — 22 7

(=2 B &)

4. § = S.
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Formal grammars: derivation example |1l (cont.)

e Derivations of G have the general form
S =1 0SBC =; 00SBCBC =1 --- =, 0" 'S(BC)" ! =, 0"(BC)"
=3 0"B"C™ =} . 0"1"C™ =, 0"1"2" (135)
e The language accepted by G is
L(G) = {0"1"2"|n € I;n > 0}. (136)

e These three derivation examples represent different classes of grammars
or languages characterized by different properties.

e A widely used classification scheme of formal grammars and languages is
the Chomsky hierarchy.
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The Chomsky hierarchy (1956)

e Given the grammar
G = {(Vn,Vr, P, S), (137)
we define the following grammar/language classes

— Type 0 or unrestricted
if there are no restrictions.

— Type 1 or context-sensitive
if all productions are of the form
a1Aas — a1PBas with A € Vs, a2 € VS, 3 € VV* (138)
Exception:
(§—=e)eP — a,azc (V\{S})",08¢e (VN\{S}H(V\{5})"(139)
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The Chomsky hierarchy (cont.)

— Type 2 or context-free

if all productions are of the form

A— pBwithAe VN;BeVVT (140)
Exception:
(§—e)eP — pBe(V\{SHWV\{S}H" (141)
— Type 3 or regular
if all productions are of the form
A — aB or (142)
A — awith A,B € Vnja € Vr
Exception:
(§ —e)e P — BeVnN\{S} (143)
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Formal grammars vs. formal languages vs. automata

e For each grammar/language type, there is also a corresponding type of

automaton:
grammar | language automaton
Type 0 unrestricted Turing machine
Type 1 context-sensitive | linear-bounded non-deterministic
Turing machine
Type 2 context-free non-deterministic pushdown automaton
Type 3 regular finite state machine
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Formal grammars vs. formal languages vs. automata: main focus of this class

e For each grammar/language type, there is also a corresponding type of

automaton:
grammar | language automaton
Type 0 unrestricted Turing machine
Type 1 context-sensitive | linear-bounded non-deterministic
Turing machine
Type 2 context-free non-deterministic pushdown automaton
Type 3 regular finite state machine

D. Suendermann

Formal Languages and Automata November 15, 2012

124



The Chomsky hierarchy: examples

e Returning to our example on identifiers of the C programming language:
P: I — LR| R|L|_
R — LR|DR| R|L|D|_
L — a|l---|z|A Z
D — 0]---|9

e This grammar is context-free but not regular.

e An equivalent regular grammar could have the following productions:

P: I — A|---|Z|a
-+ |ZR|aR|---|zR|_R
R — A|.---|Z]a z|_|0 9|
-+ |ZR|aR|---|zR|_R|OR

z|_|

OR

D. Suendermann Formal Languages and Automata November 15, 2012 125



The Chomsky hierarchy: examples (cont.)

e Returning to the three derivation examples:

— The grammar with P = {(S — 0S5), (S — 0)} is regular.
— So is the accepting language L = {0"|n € [;n > 0}.
1.

— The grammar with P = {(S — 0S51), (S — 01)} is context-free.
— So is the accepting language L = {0"1"|n € [;n > 0}.
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The Chomsky hierarchy: examples (cont.)

— The last grammar is unrestricted.

— The only production preventing the grammar from being
context-sensitive is CB — BC.

— We can, however, replace this production by the three

context-sensitive productions
CB —- CX (144)

CX — BX

BX — BC
without changing the grammar’s behavior.
— The resulting grammar is context-sensitive.
— So is the accepting language L = {0™1™2"|n € [;n > 0}.
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The Chomsky hierarchy: exercises

I. We are given the grammar

G = (Vn, Vr, P, S) (145)
with
1. Vv = {S, A, B},
2. Vr = {0},
3. P : S — ¢ 1
S — ABA 2
AB — 00 3
0A — 000A 4
A—0 5
4. S = S.

a) What is G’s highest type?
b) Show how G derives the word 00000.
c) Formally describe the language L(G).

d) Define a regular grammar G’ equivalent to G.
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The Chomsky hierarchy: exercises (cont.)

Il. An octal constant is a finite sequence of digits starting with 0 followed by
at least one digit randing from 0 to 7. Define a regular grammar
encoding exactly the set of possible octal constants.

Ill. We are given the grammar
G = (Vn, Vr, P, S) (146)
with
1. Vv = {S, N, E},
2. Vpr ={0,1,t},

3. P : S —O0NS 1
S —1ES 2
S —t 3
Nt — t0 4
Et — t1 5
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The Chomsky hierarchy: exercises (cont.)

NO — ON 6
N1 — 1N 71
E0O — OFE 8
El1— 1FE 9

4. S = S.
a) What is G’s highest type?
b) Formally describe the language L(G).
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Outline (cont.)

6. context-free languages
most programming languages are context-free

7. Antlr
...a parser generator
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Limitations of regular languages: the pumping lemma

e Given a language L, the pumping lemma is a way to disprove the
regularity of L.

e Informally, is says that sufficiently long words in L may be pumped to
produce a new word within L.

e Here, pumping refers to the repetition of the middle section of the word.

e Formally, we have:
— L is a regular language.

— Then, there exists an integer n € [ such that all words s € L with a
length greater than or equal to n can be split into three parts u, v,
and w satisfying the following conditions:

1. s = uvw,

2. v # e,

3. |uv| < n,

4. Vh € I(uv™w € L).
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Limitations of regular languages: the pumping lemma (cont.)

e The pumping lemma can be written in a single formula as follows:
reg(L) — dne€lVse L(|s|]| >n — Ju,v,w € ¥*(s = uvw
Av # e A |luv| < n AVh € I(uv"w € L))) (147)

e In order to disprove regularity of languages, this formula can be
transformed into

Vn €l ds € L(|s| > nAVu,v,w € ¥*3h € [(—(s = uvvw (148)
Av # e A |uv| < n Auv”w € L))) — —reg(L)
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The pumping lemma: example

e Given the alphabet ¥ = {(,)},

e we define a language L consisting of k£ opening brackets followed by k
closing brackets:

L={®™*ke1}. (149)

e According to Eq. 148, for all possible integers n, we need to find an
s € L whose length is greater than or equal to n, e.g.

s = (™" (150)

e Now, we just have to show that there is no way to satisfy Conditions 1 to
4 with this s.
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The pumping lemma: example (cont.)

e Considering that s = uvw (1), |uv| < n (3), and v # ¢ (2), we know

that

u=C¢ v=0 w=®E" (151)
with

Il+m+p=nm2>1 (152)
i.e.

l+p<n-1. (153)

e Now, if we are able to show that Condition 4 cannot be fulfilled, we are
done.
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The pumping lemma: example (cont.)

e That is, we need to show that

—Vh € I(uv™w € L) or 3Ih € I(uv"w ¢ L). (154)
e For h = 0, we would obtain the word
uww = (TP (155)
e According to Eq. 153, [ + p # n, hence uw & L which completes the
proof that
—reg(L). (156)
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The pumping lemma: example (cont.)

e In conclusion, we see that the language
L={®™*ker}. (157)
is not regular.

e That is, regular languages are not capable of counting brackets.

e Hence, for most common programming languages, regular
languages/grammars/expressions are not powerful enough.

e In the following, we will learn more about context-free languages which
are able to cope with most common programming languages.
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The pumping lemma: exercise |

e We are given the language L comprising all the words of the form a™
where n is a square number:

L={a"|nel}. (158)

e Prove that L is not a regular language.
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The pumping lemma: exercise |l

e We are given the language
L = {a*bl|k, 1 € T}. (159)
e Apply the pumping theorem of regular languages.

e Define a grammar G of the highest possible type accepting L .
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Outline (cont.)

6. context-free languages
most programming languages are context-free

7. Antlr
...a parser generator
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Pushdown automata

e Context-free grammars have a non-terminal symbol on the right.

e This type of grammar is sufficiently powerful to describe most scenarios
in computer programs.

e A parser is able to verify the validity of the program and erive an abstract
syntax tree for later execution of the code.

e The automaton underlying a parser is the pushdown automaton (PDA)
employing a stack.

e Arbitrary context-free grammars are represented by non-deterministic
PDAs whereas computationally efficient parsers are usually limited to
deterministic PDAs.

e In contrast to FSMs, non-deterministic PDAs are more powerful than
deterministic ones and cannot be algorithmically transformed into the
latter.
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Syntax trees

e A syntax tree represents the syntactic structure of a string according to a
formal grammar.

e Starting from the start symbol (root), every word of the language can be
represented by a tree whose leaves are terminals and the inner nodes are
non-terminals representing grammar rules.

e Consider the grammar

G = (Vn, Vr, P, S) (160)
with
1. Vv = {S},
2. Vo = {a,b},
3. P: §—- 5§ 1
S — a 2
S —b 3
4. S = S.
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Syntax trees (cont.)

e The word ab can be derived by G as
S =188 =5a8 =3 ab AHGHV

e This derivation can be represented by a syntax tree:
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Ambiguity

e The word aba can be derived by G as
S =155 =1 555 =3 aSS5 =3 abS =, aba (162)

e This derivation can be represented by two different syntax trees, that is,
the derivation is ambiguous:
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Leftmost derivation

e By always replacing the leftmost non-terminal, some cases of ambiguity
can be overcome.

e The derivation of Eq. 162 is non-ambiguously represented by the left of
the above trees.

e Unfortunately, there might be multiple leftmost derivations for a given
word.

e E.g., the word aba can be derived by Eq. 162 as well as by
S =185 =3 a8 =7 aSS =3 ab$S =3 aba (163)

e This derivation can be represented by the right of the above trees.
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Syntax trees: exercise

e Consider the grammar

G = (Vn, Vr, P, S) (164)

with

1. Vv = {S},

2. Vp = {*,4+,(,),a,b,c},

3. P: §— SxS 1
S — S4+S5 2
S—(S) 3
S — a 4
S —b 5
S —c 6

4. S =S5
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Syntax trees: exercise (cont.)

a) Draw a leftmost-derived syntax tree for the word a+(b+a)*c.

b) Show that this grammar does not account for the precedence difference
between * and + by drawing two different leftmost-derived syntax trees

for the word a+bx*c.

c) Write a context-free grammar G’ with L(G’) = L(G) accounting for the
precedence difference between * and +.

D. Suendermann Formal Languages and Automata November 15, 2012 147



Top-down parsing

e There are multiple approaches to producing syntax trees from grammars.
e A popular technique is top-down parsing.

e An LL parser is based on the top-down approach parsing the input from
left to right producing a leftmost derivation.

e Drawbacks:
— possible exponential time complexity for ambiguous grammars

— no termination for left-recursive grammars
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A parsing algorithm

1. Pick the leftmost non-processed symbol of the input word s. If there is
none and all leaves of the syntax tree are matched the word is in the
language, otherwise not.

2. Compare s with the left-most non-matched leaf of the syntax tree. If
there is none roll back to the last possible alternative derivation and
continue with Step 3.

3. If the leaf is a non-terminal symbol, extend the leaf by means of the first
not yet tried derivation until a terminal symbol ¢ shows up at the
leftmost position.

4. If s = t, continue with Step 1, otherwise roll back to the last possible
alternative derivation and continue with Step 3.
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A parsing algorithm: example

e We consider the example in Eq. 131 and show how the parsing algorithm
deals with the words w; = 0011 and w, = 0010.
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Left recursion

e Taking a look at Eq. 160, we see that the algorithm cannot succeed since
it will result in an infinite loop replacing Rule 1 into itself over and over.

e This problem is referred to as left recursion.

e A grammar is left-recursive if a non-terminal symbol can derive a
sentence with itself as the leftmost symbol.

e Examples:

— immediate left recursion

A — A« (165)
— indirect left recursion

A — Bo

B — A3 (166)
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A parsing algorithm: exercise

e Rewrite the grammar in Eq. 160 to eliminate left recursion and show that
the word aba can be parsed by the parsing algorithm.
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Outline (cont.)

6. context-free languages
most programming languages are context-free

7. Antlr
...a parser generator
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Antlr

e Antlr (Another tool for language recognition) is a parser generator.

e Given a grammar specification, it performs the syntactical analysis (aka
parsing) of a source text.

e Antlr is a free, open-source software.

e Antlr is written in Java, i.e. it is platform-independent.

e The parser Antlr produces is also a Java program.
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A parser generator for the (hypothetical) language A++

Parser specification
for language A++
(Grammar)

YACC/Bison/
Antlr

(Parser generator)

Parser code
(JorC)

A++ source code

SN

Compiler
(javac or cc)

SN

Parser
(class or exe)

iy

Parsed A++
source code
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Antlr: installation

We assume you have installed the JDK, as formerly required by JFlex.

Download the ANTLR Java complete binary jar from
http://antlr.org/download.html

Add the location of Antlr to your class path (see details in the
JFlex-related instructions), e.g.:

export
CLASSPATH=$CLASSPATH’ ;c:\antlr\antlr-3.4-complete. jar’

To test the proper installation, use example files from the package
fla *.zip by running the following command from a new Cygwin shell:

java org.antlr.Tool expr.g
javac ParseExpr. java
echo ’2 *x 3 + (6 - 4) / 2’ | java ParseExpr
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EBNF

e Grammar specifications in Antlr are based on the so-called Extended
Backus-Naur Form (EBNF) which is more compact than what we have
used to describe formal grammars so far.

e These are additional constructs used by the EBNF derivative of Antlir
(most which we already know from the operator set of JFlex):
a) the operator * matching 0 or more repetitions of an expression,
b) the operator + matching 1 or more repetitions of an expression,
c) the operator ? matching an optional expression,
d) the operator | separating alternatives,
e) the operator .. to define ranges,

f) parentheses to structure expressions.
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EBNF: example

e This is a grammar describing arithmetic expressions:
S — FE
E — P(C+|-")P)*
P — F((C*’|’/’)F) %
F — °CE’)’|N
N — (°1°..29°)(°0°..797)% (167)
e Words decribed by this grammar include
1
1+2
1+2-3
14+2%3
(1+2%3) /456
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Grammars in Antlr

The following code represents the above grammar in Antlr format:

grammar exXpr,

start:expr,

expr:product ((’+’|’=’)product) *;
product:factor((’*’|’/’)factor) *;
factor:’ (’expr’)’ [NUMBER;

NUMBER: (’17..792)(°0°..°97)%;
WS:(? 2 [°\t’ ’\n’ |’\r’){skipO; };

00 N O OB W -
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Grammars in Antlir (cont.)

e In Line 1, we specify the name of our grammar (expr) using the keyword

grammar.

e The grammar file name needs to be composed of the grammar name
concatenated with the suffix .g; that is, our grammar needs to be saved
as expr.g.

e The variable on the left of the first grammar rule, i.e. start, is used as
start symbol.
e Terminals are specified using single quotes (e.g. >+’).

e By convention, non-terminal symbols are represented by variables starting
with a lower-case letter (such as expr) unless they match terminals only,
in which case they have to start with an upper-case letter (e.g. NUMBER).

e The non-terminal symbol WS defines all those terminals supposed to be
treated as white space.

e The semantic action associated with the symbol WS in our case is skip()
which means that white spaces are ignored.
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Generating the parser

e In order to generate the parser, we run Antlr using the command
java org.antlr.Tool expr.g
producing the following files:
— exprParser. java containing the Parser code,
— exprlexer. java containing the Scanner code, and
— expr.tokens containing a mapping table between symbols used in the

grammar and IDs used in the parser code.

e In order to run the Parser from the command line, we need to write a
driver program invoking both classes exprParser and exprlLexer.
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Driver program

The following code implements Scanner and Parser generated from expr.g:

import org.antlr.runtime.*;

public class ParseExpr

{

H
N
w
N_
m chHHoMdmduo<OHQBmeAMﬁHHbmﬁumwmmvﬁwHOSmmxomwdHob
6 {

7 ANTLRInputStream input = new ANTLRInputStream(System.in);
8 exprLexer lexer = new exprlLexer(input) ;

9 CommonTokenStream ts = new CommonTokenStream(lexer);

10 exprParser parser = new exprParser(ts);

11 parser.expr();
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Executing the parser

e Next, we need to compile the driver program by
javac ParseExpr. java
e Finally, we are able to execute the parser applying it to an input word, for
example:

echo ’2 *x 3 + (6 - 4) / 2’ | java ParseExpr
e This input is a valid expression for the grammar we specified.

e As we did not define any semantic actions in the grammar, the parser
does not return anything but terminates silently.
e Now, let us try to parse a word not matched by the grammar, e.g.

echo ’2 *x + 3 + (6 - 4) / 2’ | java ParseExpr

e This time, we receive the error message
line 1:4 no viable alternative at input ’+’

telling us that at Line 1, Character 5 (characters are enumerated starting
with 0), the parser did not know how to handle the input symbol ’+°.
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Parsers: exercise

Write parsers in Antlr for the following languages:

1. Well-formulated formulas of propositional logic.

2. A simple HTML document (supporting the tags <html>, <head>,

<title>, <body>, <p>, <br>).

3. Simplified English with the following non-terminals (tags):

S: sentence,

NP: noun phrase,

VP: verb phrase,

PP: prepositional phrase,
N: noun,

V: verb,

P: verb,

A: article.

Define a number of matching terminals to test the parser.

D. Suendermann Formal Languages and Automata November 15, 2012

164



Extending the parser to evaluate expressions

e The above example parser was able to verify whether the syntax of an
input expression is correct.

e In order to produce a runnable program, the parser needs to be extended
by executable code interpreting the parsable rules of the input expression.

e This can be done by injecting Java code directly into the grammar
definition.

e The following code exemplifies how our grammar expr.g can be modified
to calculate the result of an input expression.
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Extending the parser to evaluate expressions (cont.)

grammar exprEval;

start:expr{System.out.println($Sexpr.result);} EOF;
expr returns [int result]
: Xx=product {Sresult=$x.result;}
(
'+'y=product {Sresult+=Sy.result; }
'-'y=product{$result-=Sy.result;}

) *;
product returns [int result]
:x=factor{Sresult=$x.result;}
(
'*'y=factor{Sresult*=Sy.result;}

'/'y=factor{S$Sresult/=Sy.result;}

) *;

factor returns [int result]

;' ("x=expr') '{$result=$x.result; }
NUMBER{$result=new Integer ($NUMBER.text);};
NUMBER: ('"1'..'9")('0'"..'9")*;
WS: (" "I'\t"['"\n"|"'\r"){skip();};
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Extending the parser to evaluate expressions (cont.)

e After modifying the driver program (which now needs to call the method

parser.start () directly) we can execute for instance

echo ’((4%2)+4)/3’ | java ParseExprEval

which returns the expected result 4.

e These are the additional features we are using:

1.

Java code can be injected at any place inside the grammar rules by
using curly brackets.

Objects associated with non-terminal symbols can be called inside the
Java code using their name preceded by $ (e.g. $expr).

The built-in symbol EOF forces the parser to process the entire input
string which prevents incomplete parse results to be returned.

Return parameters of a rule can be defined by extending the rule
header by the keyword returns followed by a type and a variable
name in square brackets (e.g. expr returns [int result]). This
parameter can be used inside the rule escaping it by $ (e.g. $result).
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Evaluation with variables

e The above example is already a compiler in that it does not only parse
input expressions but also evaluates them.

e To extend our language’s functionality, we want to do two more
enhancements:
a) Allow for multiple statements to be evaluated.

b) Allow for variables to be used.

e In order to do this, we can use the following additional features:

5. Code encapsulated by the keyword header{} is inserted right at the
top of the parser code.

6. Code encapsulated by the keyword members{} is inserted right at the
top of the parser class.

7. A useful Java class to store variables and their values is TreeMap.
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Evaluation with variables (cont.)

grammar exprComp;
@header
{

import java.util.TreeMap;
}
@members
{

TreeMap<String, Integer> varTable = new TreeMap<String, Integer>();
}
start:statement+ EOF;
statement:expr{System.out.println(Sexpr.result);} (';")*

|[VAR '=' expr{varTable.put (SVAR.text, Sexpr.result);}(';')™*;
expr returns [int result]

:x=product {Sresult=Sx.result; }

(
'+'y=product{$result+=Sy.result; }

'-'y=product{$result-=Sy.result; }

) *;
product returns [int result]
:x=factor{Sresult=$x.result;}
(
'*'y=factor{S$result*=Sy.result;}

'/'y=factor{$result/=$y.result;}

) *;
factor returns [int result]
' ("x=expr') '{Sresult=Sx.result;}
NUMBER{S$result=new Integer (SNUMBER.text);}
|[VAR{$result = varTable.get (SVAR.text);};

NUMBER: ("1'..'9") ('0'..'9")*;
WS: (" "["\t"|'"\n"|"'\r") {skip();};
VAR: ('a'.."z"|'"A'"..'Z")+;
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Abstract syntax trees

e In the above example, we were lucky since expressions could be
evaluated right at the time of parsing.

e In more complex scenarios (e.g., user-defined functions), it is necessary
to parse the entire input first generating an abstract syntax tree (AST).

e Only after the AST has been generated, the actual evaluation is carried

out.

e In Antlr, this can be achieved by putting the evaluation logic into
external Java classes referenced from within the grammar.
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Abstract syntax trees: example

e In the following example, we develop a parser which is to differentiate a

given formula with respect to x.

e In order to simplify things, we want to start with formulas which are

sums of constants and zs (e.g. 4 + « + ¢ + x).

e This is how the grammar diff.g can look like:

grammar diff;
expr returns [Expr result]:
f= maam:aﬁawmmCAA $f.result;}
('+' g=addend{$result=new mcammwmmCAﬁ $g.result);})* EOF;
addend returns [Expr result]:
NUM{$result=new Number ($NUM.text);}|
VAR{S$result=new Vvariable($VAR.text);};
zcz"m_o..._@_u
VAR:('a'..'z"|'A'.."'Z2");
ws @ (' __./ﬁ___/:___/_.u { skipQ; };
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Abstract syntax trees: example (cont.)

e This grammar refers to four classes (Expr, Sum, Number, Variable) all of
which have to be coded in respective external Java source files.

e Since the result of the rules expr and addend is an instantiation of
either of the classes Sum, Number, or Variable but the result itself needs
to be of type Expr, the latter needs to be an abstract class whereas the
former are extensions:
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Abstract syntax trees: example (cont.)

public abstract class Expr {
) public abstract Expr diff(String x);

public class Number extends Expr {
private Integer mvalue;

public Number(Integer value) {
N mvalue = value;

public Number(String value) {
y mvalue = new Integer(value);

public Expr diff(String x) {
) return new Number(0);

public String toString() {
) return mvalue.toString(Q);
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Abstract syntax trees: example (cont.)

e And this is a driver class acommodating the AST and executing the
differentiation with respect to x:

import org.antlr.runtime.*;

public class ParseDiff

{

mccdﬁn static void main(String[] args) throws Exception
ANTLRInputStream input = new ANTLRInputStream(System.in);
diffLexer lexer = new diffLexer(input);
CommonTokenStream ts = new CommonTokenStream(lexer);
diffpParser parser = new diffParser(ts);
Expr expr=parser.expr(Q);
Expr diff=expr.diff("x");
System.out.printin(diff);
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Appendix

Solutions to selected exercises
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Formal languages: solution to exercise

e Given the alphabet X,;, and the language

L = {1}. (168)
a) Formally describe the language
L' = L*\{e}. (169)

— According to Equation 25, we have
L' = {L°uL*urL?u...}\{e} (170)
= {e,1,11,...}\{e}
{1,11,...}
= {11"|n € I}.
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Formal languages: solution to exercise (cont.)

b) Formally describe the set
D = {d(w)|w € L'}. (171)

— Using Equations 170 and 14, we have

D = {d(1),d(11),d(111),...} (172)
{1,3,7,...}
= {2-2" —1|n €1}
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Formal languages: solution to exercise (cont.)

c) Formally describe the language

L = {w|lw—1¢€ L'} (173)
— The condition
w—1¢€ {1,11,111,...} (174)
is equivalent to
we{1+1,11+1,1114+1,...}. (175)
— Hence, we have
L = {1+1,11+1,111+1,...} (176)
= {10,100, 1000, ...}
= {100"|n € I}.
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Formal languages: solution to exercise (cont.)

d) Formally describe the language

" ={w|lw+1 € L'}. (177)
— The condition
w+1e {1,11,111,...} (178)
is equivalent to
we {1—1,11 — 1,111 —1,...}. (179)
— Hence, we have
L' = {1—-1,11—-1,111—1,...} (180)
= 4{0,10,110,...}
= {1"0|n € I}.
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Regular expressions: solution to exercise

a) Using the alphabet ¥,,. = {a, b, c}, give a regular expression r, for all
the words w € X7, = containing exactly one a or exactly one b.

e Similarly to Equation 50, we have

re = (b+c)*a(b+c)* 4+ (a4 ¢)*b(a + ¢)* (181)
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Regular expressions: solution to exercise (cont.)

b) Which language is expressed by r,7?

e Similarly to Equation 51, we have

L(rq) = {w € I3, |{¢ € [|lw[i] = a}| =1V [{i € [Jw[é] =b}| =1} (182)

abc

e Alternatively, one can write

L(rq) = {we3Xf ||{i € Jw[i] =a} =1} U (183)

abc

{we =¥, ||{i € Iw[i] =b}| =1}

abc
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Regular expressions: solution to exercise (cont.)

c) Using the alphabet X, = {a, b, c}, give a regular expression 7} for all
the words containing at least one a and one b.

re« = (a+b+c)fa(a4+b+c)*b(a+b+c)* + (184)
(a4+b+4+c)*b(a+b+c)*ala+Db+c)*
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Regular expressions: solution to exercise (cont.)

d) Using the alphabet X},;, = {0, 1}, give a regular expression for all the
words whose third last symbol is 1.

ra = (0 + 1)*1(0 + 1)(0 + 1) (185)
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Regular expressions: solution to exercise (cont.)

e) Using the alphabet X,,;,, give a regular expression for all the words not

containing the string 110.

e Not containing the string 110 means that 1 must be followed by 0 except
for at the end of the word which can be preceded by an arbitrary number
of 1.

e A possible solution is
re = 0*(100%)*1*. (186)
e To check the validity of a regular expression cadidate, it is useful to
control that prototypical words are covered by the candidate, e.g.
£,0,1,0%,1%,0%1%,0%10™ € L(r.) (187)
and that others are not (i.e., those featuring 110), e.g.

110,0%111*0 &€ L(7e). (188)
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Regular expressions: solution to exercise (cont.)

f) Which language is expressed by the regular expression

ry = (1 +¢€)(00"1)*0*? (189)

e To understand what a regular expression is doing, it is useful to point out
prototypical words covered by the regular expression, e.g.

e,0,1,0%,10%,0%10* € L(ry) (190)
and that others that are not, e.g.

11,111* & L(ry). (191)

e Apparently, L(r¢) contains all those words not containing two (or more)
1 in sequence.

e Hence, we formally describe L(r¢) as the set of all the words with zero
occurences of the string 11:

L(ry) = {w € 3§, ||{¢ € I|lw[éd]w[i + 1] = 11}| = 0}. (192)
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Algebraic operations on regular expressions: solutions to exercise

a) Simplify the following regular expression:

r=0(E4+0+1)*+ (e+1)(14+0)* +e. (193)

r = Ole+04+1)"+(e+1)(14+0)"+e¢ (194)

00 4+ 1)* 4 (e 4+ 1)(0 + 1)* + &

7.5
. 00+ 1)*+(0+1)*+1(0+1)* +¢
1,7
. e+ (04 1)(0+ 1)* + (0 4+ 1)*
Eq.58,13
. (0+1)"+(0+1)"
9

(0 4 1)*.
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Algebraic operations on regular expressions: solutions to exercise (cont.)

b) Prove the equivalence using only algebraic operations

r* =e+r*. (195)
13

e+r* = e4+e+r*r (196)
9
= e+ r¥r
13
= r* O
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Algebraic operations on regular expressions: solutions to exercise (cont.)

c) Prove the equivalence using only algebraic operations

10(10)* = 1(01)™o0. (197)
o We set

ro= 1(01)*0, (198)

s = 10, (199)

t = 10. (200)

D. Suendermann Formal Languages and Automata November 15, 2012 188



Algebraic operations on regular expressions: solutions to exercise (cont.)

e This yields
rs+t = 1(01)*010 4 10 (201)

8
=~ 1((01)*010 + 0)
5,7
= 1((01)*01 + £)0
13
= 1(01)*0
= T

(202)

e With the observation that ¢ ¢ L(r), this fulfills the conditions of Rule
15, leading to the conclusion

1(01)*0 = r = ts* = 10(10)* O (203)
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JFlex: solution to exercise

1. write a JFlex program removing C and C++ comments from an input
source

java JFlex.Main removeCppComment.flex
javac removeCppComment. java

java removeCppComment example.cpp

2. write a JFlex program extracting the plain text from an HTLM source

java JFlex.Main html2text.flex
javac html2text.java

java html2text teaching.html

3. write a JFlex program computing average exam scores per student from
a score sheet (exam.txt)

java JFlex.Main examScore.flex
javac examScore. java

java examScore exam.txt
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FSM: solution to exercise

a) r = ab*a + bb*

—uV A= AQVM&%“QOT@V

with
1. @ ={0,1,2,3}
2. 3 = {a,b}

3. 6(0,a) =1;6(0,b) = 2;0(1,2) = 3;0(1,b) = 1;
0(2,2) = Q;6(2,b) =2;6(3,2) = 2;0(3,b) =0

4. go = 0

5. F = {2,3}
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FSM: solution to exercise (cont.)

2. a) r = ab(a 4+ b)*

b)  » — (a+b)*ab(a+ b)*

c) r = (a+ b)*ab
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Appendix

Notes for the compiler lab project
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Notes for the compiler lab project

e important dates:

proposal due | May 2
code due May 14
presentations | May 16

e Please submit your proposals to all of the following e-mail addresses:

david@suendermann.com
david@speechcycle.com

suendermann@dhbw-stuttgart.de
e Up to two students can work together in a team.

e Presentations are to be in English and have a duration of 15 minutes.
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