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Abstract

Starting from first principles, we re-visit the statisti-
cal approach and study two forms of the Bayes deci-
sion rule: the common rule for minimizing the num-
ber of string errors and a novel rule for minimizing
the number of symbols errors. The Bayes decision
rule for minimizing the number of string errors is
widely used, e.g. in speech recognition, POS tag-
ging and machine translation, but its justification is
rarely questioned. To minimize the number of sym-
bol errors as is more suitable for a task like POS tag-
ging, we show that another form of the Bayes deci-
sion rule can be derived. The major purpose of this
paper is to show that the form of the Bayes decision
rule should not be taken for granted (as it is done
in virtually all statistical NLP work), but should be
adapted to the error measure being used. We present
first experimental results for POS tagging tasks.

1 Introduction

Meanwhile, the statistical approach to natural lan-
guage processing (NLP) tasks like speech recog-
nition, POS tagging and machine translation, has
found widespread use. There are three ingredients
to any statistical approach to NLP, namely the Bayes
decision rule, the probability models (like trigram
model, HMM, ...) and the training criterion (like
maximum likelihood, mutual information, ...).

The topic of this paper is to re-consider the form
of the Bayes decision rule. In virtually all NLP
tasks, the specific form of the Bayes decision rule
is never questioned, and the decision rule is adapted
from speech recognition. In speech recognition, the
typical decision rule is to maximize the sentence
probability over all possible sentences. However,
this decision rule is optimal for the sentence error
rate and not for the word error rate. This difference
is rarely studied in the literature.

As a specific NLP task, we will consider Part-of-
speech (POS) tagging. However, the problem ad-
dressed comes up in any NLP task which is tack-
led by the statistical approach and which makes use

of a Bayes decision rule. Other prominent exam-
ples are speech recognition and machine translation.
The advantage of the POS tagging task is that it will
be easier to handle from the mathematical point of
view and will result in closed-form solutions for the
decision rules. From this point-of-view, the POS
tagging task serves as a good opportunity to illus-
trate the key concepts of the statistical approach to
NLP.

Related Work: For the task of POS tagging,
statistical approaches were proposed already in the
60’s and 70’s (Stolz et al., 1965; Bahl and Mercer,
1976), before they started to find widespread use
in the 80’s (Beale, 1985; DeRose, 1989; Church,
1989).

To the best of our knowledge, the ’standard’ ver-
sion of the Bayes decision rule, which minimizes
the number of string errors, is used in virtually all
approaches to POS tagging and other NLP tasks.
There are only two research groups that do not take
this type of decision rule for granted:

(Merialdo, 1994): In the context of POS tagging,
the author introduces a method that he calls maxi-
mum likelihood tagging. The spirit of this method
is similar to that of this work. However, this method
is mentioned as an aside and its implications for the
Bayes decision rule and the statistical approach are
not addressed. Part of this work goes back to (Bahl
et al., 1974) who considered a problem in coding
theory.

(Goel and Byrne, 2003): The error measure con-
sidered by the authors is the word error rate in
speech recognition, i.e. the edit distance. Due to the
mathematical complexity of this error measure, the
authors resort to numeric approximations to com-
pute the Bayes risk (see next section). Since this ap-
proach does not results in explicit closed-form equa-
tions and involves many numeric approximations, it
is not easy to draw conclusions from this work.



2 Bayes Decision Rule for Minimum Error
Rate

2.1 The Bayes Posterior Risk
Knowing that any task in NLP tasks is a difficult
one, we want to keep the number of wrong decisions
as small as possible. This point-of-view has been
used already for more than 40 years in pattern clas-
sification as the starting point for many techniques
in pattern classification. To classify an observation
vector � into one out of several classes � , we resort
to the so-called statistical decision theory and try to
minimize the average risk or loss in taking a deci-
sion. The result is known as Bayes decision rule
(Duda and Hart, 1973):�������� �
	�������� ������������ � � �"!�#%$'& �)(+*�-,�.
where $/& �)(+*�0, is the so-called loss function or error
measure, i.e. the loss we incur in making decision �
when the true class is *� .

In the following, we will consider two specific
forms of the loss function or error measure $/& �+()*�0, .
The first will be the measure for string errors, which
is the typical loss function used in virtually all sta-
tistical approaches. The second is the measure for
symbol errors, which is the more appropriate mea-
sure for POS tagging and also speech recognition
with no insertion and deletion errors (such as iso-
lated word recognition).

2.2 String Error
For POS tagging, the starting point is the observed
sequence of words �1�32�456�32 5%78787 2 4 , i.e. the
sequence of words for which the POS tag sequence
has �9�;: 45<�=: 5-78787 : 4 has to be determined.

The first error measure we consider is the string
error: two POS strings are considered to be correct
only when the POS symbols in each position are
identical. In this case, the loss function is:$'& : 45>()*: 45?,6� @?A 4BC
D 5�E � : C (
*: C !
with the Kronecker delta E � �)(
*�+! . In other words, the
errors are counted at the string level and not at the
level of single symbols. Inserting this cost function
into the Bayes risk (see Section 2.1), we immedi-
ately obtain the following form of Bayes decision
rule for minimum string error:2 4 5 ���: 45 � �
	��F��)GHJIKML �N�"� : 45 � 2 45 !PO� �
	��F��)GHJIKML �N�"� : 45 (Q2 45 ! O

This is the starting point for virtually all statisti-
cal approaches in NLP like speech recognition and
machine translation. However, this decision rule is
only optimal when we consider string errors, e.g.
sentence error rate in POS tagging and in speech
recognition. In practice, however, the empirical er-
rors are counted at the symbol level. Apart from
(Goel and Byrne, 2003), this inconsistency of deci-
sion rule and error measure is never addressed in the
literature.

2.3 Symbol Error
Instead of the string error rate, we can also consider
the error rate of single POS tag symbols (Bahl et
al., 1974; Merialdo, 1994).

This error measure is defined by the loss function:$'& : 45 (
*: 45 ,6� 4�CRD 5 &S@?A E � : C (
*: C !T,
This loss function has to be inserted into the Bayes
decision rule in Section 2.1. The computation of the
expected loss, i.e. the averaging over all classes *�?�*:U45 , can be performed in a closed form. We omit
the details of the straightforward calculations and
state only the result. It turns out that we will need
the marginal (and posterior) probability distribution���%VW� :X� 2 4 5 ! in positions YZ�[@
( 78787 (�\ :�N� V � :X� 2 45 !^]_� �H I Ka` HQbaDcH ����� : 45 � 2 45 !
where the sum is carried out over all POS tag strings:U45 with : V �d: , i.e. the tag : V in position Y is
fixed at : V �d: . The question of how to perform
this summation efficiently will be considered later
after we have introduced the model distributions.

Thus we have obtained the Bayes decision rule
for minimum symbol error in position YZ�[@
( 78787 (�\ :� 2 45 (QYe!f�g�: V � �
	��F��)GH L �N�%Vh� :X� 2 45 ! O� �
	��F��)GH L �N�%Vh� :i(Q2 45�! O
By construction this decision rule has the special
property that it does not put direct emphasis on lo-
cal coherency of the POS tags produced. In other
words, this decision rule may produce a POS tag
string which is linguistically very unlikely.

3 The Modelling Approaches to POS
Tagging

The derivation of the Bayes decision rule assumes
that the probability distribution ����� : 45N(Q2 45/! (or



����� :U45W� 2/45/! ) is known. Unfortunately, this is not
the case in practice. Therefore, the usual approach
is to approximate the true but unknown distribution
by a model distribution � � : 45>(Q2 45/! (or � � : 45W� 2 45/! ).
We will review two popular modelling approaches,
namely the generative model and the direct model,
and consider the associated Bayes decision rules for
both minimum string error and minimum symbol er-
ror.

3.1 Generative Model: Trigram Model

We replace the true but unknown joint distribution����� :U45>(Q2/45/! by a model-based probability distribu-
tion � � :U45>(Q2/45/! :����� : 45>(Q2 45/!f��� � : 45>(Q2 45/!a��� � : 45 !�� � 2 4 5W� : 45�!
We apply the so-called chain rule to factorize each
of the distributions � � : 45 ! and � � 2 4 5 � : 45 ! into a
product of conditional probabilities using specific
dependence assumptions:

� � : 45 (Q2 4 5 ! � 4BCRD 5 � � � : C � : C�� 5C���� !�� � 2 C � : C !
	
with suitable definitions for the case �;� @ . Here,
the specific dependence assumptions are that the
conditional probabilities can be represented by a
POS trigram model � � : C � : C�� 5C���� ! and a word mem-
bership model � � 2 C � : C ! . Thus we obtain a proba-
bility model whose structure fits into the mathemat-
ical framework of so-called Hidden Markov Model
(HMM). Therefore, this approach is often also re-
ferred to as HMM-based POS tagging. However,
this terminology is misleading: The POS tag se-
quence is observable whereas in the Hidden Markov
Model the state sequence is always hidden and can-
not be observed. In the experiments, we will use a
7-gram POS model. It is clear how to extend the
equations from the trigram case to the 7-gram case.

3.1.1 String Error
Using the above model distribution, we directly ob-
tain decision rule for minimum string error:2 4 5 �g�: 45 � �
	 � ��)GH IK L � � : 45 (Q2 4 5 ! O
Since the model distribution is a basically a second-
order model (or trigram model), there is an efficient
algorithm for finding the most probable POS tag
string. This is achieved by a suitable dynamic pro-
gramming algorithm, which is often referred to as
Viterbi algorithm in the literature.

3.1.2 Symbol Error

To apply the Bayes decision rule for minimum sym-
bol error rate, we first compute the marginal proba-
bility � V � : (Q2 4 5 ! :
� V � : (Q2 4 5 ! � �H0IK ` H b DcH � � : 45 (Q2 4 5 !� �H0IK ` H b DcH B C � � � : C � : C�� 5C���� !�� � 2 C � : C ! 	
Again, since the model is a second-order model,
the sum over all possible POS tag strings : 45 (with: V � : ) can be computed efficiently using a suit-
able extension of the forward-backward algorithm
(Bahl et al., 1974).

Thus we obtain the decision rule for minimum
symbol error in positions YZ�[@
( 78787 (�\ :

� 2 45 (QYe!����: V � �
	��F��)GH L � V � :i(Q2 45 ! O
Here, after the the marginal probability � VW� :i(Q2/45 !
has been computed, the task of finding the most
probable POS tag in position Y is computationally
easy. Instead, the lion’s share for the computational
effort is required to compute the marginal probabil-
ity � V � :i(Q2 45 ! .
3.2 Direct Model: Maximum Entropy

We replace the true but unknown posterior distribu-
tion ����� : 45 � 2 4 5 ! by a model-based probability dis-
tribution � � : 45W� 2/45/! :����� : 45�� 2 4 5/!a�� � : 45W� 2 4 5/!
and apply the chain rule:

� � : 45 � 2 4 5 ! � 4BCRD 5 � � : C � : C�� 55 (Q2 4 5 !
� 4BCRD 5 � � : C � : C�� 5C���� (Q2 C����C���� !

As for the generative model, we have made specific
assumptions: There is a second-order dependence
for the tags : C 5 , and the dependence on the words2/45 is limited to a window 2 C����C���� around position � .
The resulting model is still rather complex and re-
quires further specifications. The typical procedure
is to resort to log-linear modelling, which is also
referred to as maximum entropy modelling (Ratna-
parkhi, 1996; Berger et al., 1996).



3.2.1 String Error
For the minimum string error, we obtain the deci-
sion rule:2 45 ���: 45 � �
	��  �)GH I K L � � : 45 � 2 45 ! O
Since this is still a second-order model, we can use
dynamic programming to compute the most likely
POS string.

3.2.2 Symbol Error
For the minimum symbol error, the marginal (and
posterior) probability � V � :X� 2 4 5 ! has to be com-
puted:

� V � :X� 2 4 5 ! � �HJIK ` H b�DcH ����� : 45W� 2 4 5/!� �HJIK ` H b DcH B C � � : C � : C�� 5C���� (Q2 C����C���� !
which, due to the specific structure of the model� � : C � : C�� 5C���� (Q2 C����C���� ! , can be calculated efficiently us-
ing only a forward algorithm (without a ’backward’
part).

Thus we obtain the decision rule for minimum
symbol error in positions YZ�[@
( 78787 (�\ :� 2 45N(QYe!����: V � �
	��F��)GH L � Vh� :X� 2 45�!PO
As in the case of the generative model, the computa-
tional effort is to compute the posterior probability� V � : � 2 4 5 ! rather than to find the most probable tag
in position Y .

4 The Training Procedure

So far, we have said nothing about how we train
the free parameters of the model distributions. We
use fairly conventional training procedures that we
mention only for the sake of completeness.

4.1 Generative Model

We consider the trigram-based model. The free pa-
rameters here are the entries of the POS trigram dis-
tribution � � :X� :�� � ( :�� ! and of the word membership
distribution � � 2W� : ! . These unknown parameters are
computed from a labelled training corpus, i.e. a col-
lection of sentences where for each word the asso-
ciated POS tag is given.

In principle, the free parameters of the models
are estimated as relative frequencies. For the test
data, we have to allow for both POS trigrams (or� -grams) and (single) words that were not seen in

the training data. This problem is tackled by ap-
plying smoothing methods that were originally de-
signed for language modelling in speech recogni-
tion (Goodman, 1995).

4.2 Direct Model

For the maximum entropy model, the free param-
eters are the so-called

���
or feature parameters

(Berger et al., 1996; Ratnaparkhi, 1996). The train-
ing criterion is to optimize the logarithm of the
model probabilities � � : C � : C����C�� 5 (Q2 C ���C���� ! over all po-
sitions � in the training corpus. The corresponding
algorithm is referred to as GIS algorithm (Berger et
al., 1996). As usual with maximum entropy mod-
els, the problem of smoothing does not seem to be
critical and is not addressed explicitly.

5 Experimental Results
Of course, there have already been many papers
about POS tagging using statistical methods. The
goal of the experiments is to compare the two deci-
sion rules and to analyze the differences in perfor-
mance. As the results for the WSJ corpus will show,
both the trigram method and the maximum entropy
method have an tagging error rate of 3.0% to 3.5%
and are thus comparable to the best results reported
in the literature, e.g. (Ratnaparkhi, 1996).

5.1 Task and Corpus

The experiments are performed on the Wall Street
Journal (WSJ) English corpus and on the Münster
Tagging Project (MTP) German corpus.

The POS tagging part of The WSJ corpus (Ta-
ble 1) was compiled by the University of Pennsylva-
nia and consists of about one million English words
with manually annotated POS tags.

Text POS
Train Sentences 43508

Words+PMs 1061772
Singletons 21522 0
Word Vocabulary 46806 45
PM Vocabulary 25 9

Test Sentences 4478
Words+PMs 111220
OOVs 2879 0

Table 1: WSJ corpus statistics.

The MTP corpus (Table 2) was compiled at the
University of Münster and contains tagged Ger-
man words from articles of the newspapers Die Zeit
and Frankfurter Allgemeine Zeitung (Kinscher and
Steiner, 1995).



Text POS
Train Sentences 19845

Words+PMs 349699
Singletons 32678 11
Word Vocabulary 51491 68
PM Vocabulary 27 5

Test Sentences 2206
Words+PMs 39052
OOVs 3584 2

Table 2: MTP corpus statistics.

For the corpus statistics, it is helpful to distin-
guish between the true words and the punctuation
marks (see Table 1 and Table 2). This distinction is
made for both the text and the POS corpus. In ad-
dition, the tables show the vocabulary size (number
of different tokens) for the words and for the punc-
tuation marks.

Punctuation marks (PMs) are all tokens which do
not contain letters or digits. The total number of
running tokens is indicated as Words+PMs. Single-
tons are the tokens which occur only once in the
training data. Out-of-Vocabulary words (OOVs) are
the words in the test data that did not not occur in
the training corpus.

5.2 POS Tagging Results

The tagging experiments were performed for both
types of models, each of them with both types of
the decision rules. The generative model is based on
the approach described in (Sündermann and Ney,
2003). Here the optimal value of the � -gram order
is determined from the corpus statistics and has a
maximum of � ��� . The experiments for the direct
model were performed using the maximum entropy
tagger described in (Ratnaparkhi, 1996).

The tagging error rates are showed in Table 4 and
Table ??. In addition to the overall tagging error rate
(Overall), the tables show the tagging error rates for
the Out-of-Vocabulary words (OOVs) and for the
punctuation marks (PMs).

For the generative model, both decision rules
yield similar results. For the direct model, the over-
all tagging error rate increases on each of the two
tasks (from 3.0 % to 3.3 % on WSJ and from 5.4 %
to 5.6 % on MTP) when we use the symbol decision
rule instead of the string decision rule. In particu-
lar, for OOVs, the error rate goes up clearly. Right
now, we do not have a clear explanation for this dif-
ference between the generative model and the direct
model. It might be related to the ’forward’ struc-
ture of the direct model as opposed to the ’forward-

WSJ Task Decision Overall OOVs PMs
Rule

Generative string 3.5 16.9 0
Model symbol 3.5 16.7 0
Direct string 3.0 15.4 0.08
Model symbol 3.3 16.6 0.1

Table 3: POS tagging error rates [%] for WSJ task.

MTP Task Decision Overall OOVs PMs
Rule

Generative string 5.4 13.4 3.6
Model symbol 5.4 13.4 3.6
Direct string 5.4 12.7 3.8
Model symbol 5.6 13.4 3.7

Table 4: POS tagging error rates [%] for MTP task.

backward’ structure of the generative model. Any-
way, the differences in the overall tagging error rate
are statistically not significant.

5.3 Examples

A detailed analysis of the tagging results showed
that for both models there are sentences where one
decision rule is more efficient and sentences where
the other decision rule is better.

For the generative model, these differences seem
to occur at random, but for the direct model, some
distinct cases can be observed. For example, for
the WSJ corpus, the string decision rule is signifi-
cantly better for the present and past tense of verbs
(VBP, VBN), and the symbol decision rule is bet-
ter for adverb (RB) and verb past participle (VBN).
Typical errors generated by the symbol decision rule
are tagging present tense as infinitive (VB) and past
tense as past participle (VBN), and for string de-
cision rule, adverbs are often tagged as preposition
(IN) or adjective (JJ) and past participle as past tense
(VBD).

For the German corpus, the string decision rule
better handles demonstrative determiners (Rr) and
subordinate conjunctions (Cs) whereas symbol de-
cision rule is better for definite articles (Db). The
symbol decision rule typically tags the demonstra-
tive determiner as definite article (Db) and subordi-
nate conjunctions as interrogative adverbs (Bi), and
the string decision rule tends to assign the demon-
strative determiner tag to definite articles.

These typical errors for the symbol decision rule
are shown in Table 5, and for the string decision rule
in Table 6.



6 Conclusion
So far, the experimental tests have shown no im-
provement when we use the Bayes decision rule for
minimizing the number of symbol errors rather than
the number of string errors. However, the important
result is that the new approach results in comparable
performance. More work is needed to contrast the
two approaches.

The main purpose of this paper has been to show
that, in addition to the widely used decision rule for
minimizing the string errors, it is possible to derive a
decision rule for minimizing the number of symbol
errors and to build up the associated mathematical
framework.

There are a number of open questions for future
work:

1) The error rates for the two decision rules are
comparable. Is that an experimental coincidence?
Are there situations for which we must expect a sig-
nificance difference between the two decision rules?
We speculate that the two decision rules could al-
ways have similar performance if the error rates are
small.

2) Ideally, the training criterion should be closely
related to the error measure used in the decision
rule. Right now, we have used the training crite-
ria that had been developed in the past and that had
been (more or less) designed for the string error rate
as error measure. Can we come up with a training
criterion tailored to the symbol error rate?

3) In speech recognition and machine translation,
more complicated error measures such as the edit
distance and the BLEU measure are used. Is it
possible to derive closed-form Bayes decision rules
(or suitable analytic approximations) for these error
measures? What are the implications?
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VBP � VB
reference ... investors/NNS already/RB have/VBP sharply/RB scaled/VBN ...
string ... investors/NNS already/RB have/VBP sharply/RB scaled/VBN ...
symbol ... investors/NNS already/RB have/VB sharply/RB scaled/VBN ...
reference We/PRP basically/RB think/VBP that/IN ...
string We/PRP basically/RB think/VBP that/IN ...
symbol We/PRP basically/RB think/VB that/IN ...
VBD � VBN
reference ... plant-expansion/JJ program/NN started/VBD this/DT year/NN ...
string ... plant-expansion/NN program/NN started/VBD this/DT year/NN ...
symbol ... plant-expansion/NN program/NN started/VBN this/DT year/NN ...
reference ... countries/NNS have/VBP in/IN recent/JJ years/NNS made/VBD agreements/NNS ...
string ... countries/NNS have/VBP in/IN recent/JJ years/NNS made/VBD agreements/NNS ...
symbol ... countries/NNS have/VBP in/IN recent/JJ years/NNS made/VBN agreements/NNS ...
Rr � Db
reference Das/Db Sandmännchen/Ne ,/Fi das/Rr uns/Rp der/Db NDR/Ab präsentiert/Vf ...
string Das/Db Sandmännchen/Ng ,/Fi das/Rr uns/Rp der/Db NDR/Ab präsentiert/Vf ...
symbol Das/Db Sandmännchen/Ng ,/Fi das/Db uns/Rp der/Db NDR/Ab präsentiert/Vf ...
reference ... für/Po Leute/Ng ,/Fi die/Rr glauben/Vf ...
string ... für/Po Leute/Ng ,/Fi die/Rr glauben/Vf ...
symbol ... für/Po Leute/Ng ,/Fi die/Db glauben/Vf ...
Cs � Bi
reference Denke/Vf ich/Rp nach/Qv ,/Fi warum/Cs mir/Rp die/Db Geschichte/Ng gefällt/Vf ...
string Denke/Vf ich/Rp nach/Qv ,/Fi warum/Cs mir/Rp die/Db Geschichte/Ng gefällt/Vf ...
symbol Denke/Vf ich/Rp nach/Qv ,/Fi warum/Bi mir/Rp die/Db Geschichte/Ng gefällt/Vf ...

Table 5: Examples of tagging errors for the symbol decision rule (direct model)

RB � IN, JJ
reference The/DT negotiations/NNS allocate/VBP about/RB 15/CD %/NN ...
string The/DT negotiations/NNS allocate/VBP about/IN 15/CD %/NN ...
symbol The/DT negotiations/NNS allocate/VBP about/RB 15/CD %/NN ...
reference ... will/MD lead/VB to/TO a/DT much/RB stronger/JJR performance/NN ...
string ... will/MD lead/VB to/TO a/DT much/JJ stronger/JJR performance/NN ...
symbol ... will/MD lead/VB to/TO a/DT much/RB stronger/JJR performance/NN ...
VBN � VBD
reference ... by/IN a/DT police/NN officer/NN named/VBN John/NNP Klute/NNP ...
string ... by/IN a/DT police/NN officer/NN named/VBD John/NNP Klute/NNP ...
symbol ... by/IN a/DT police/NN officer/NN named/VBN John/NNP Klute/NNP ...
Db � Rr
reference er/Rp kam/Vf auf/Po die/Db Idee/Ng ,/Fi die/Db Emotionen/Ng zu/Qi kanalisieren/Vi ...
string er/Rp kam/Vf auf/Po die/Db Idee/Ng ,/Fi die/Rr Emotionen/Ng zu/Qi kanalisieren/Vi ...
symbol er/Rp kam/Vf auf/Po die/Db Idee/Ng ,/Fi die/Db Emotionen/Ng zu/Qi kanalisieren/Vi ...

Table 6: Examples of tagging errors for the string decision rule (direct model)


