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ABSTRACT

Applying a recently presented text-independent speech
alignment technique based on unit selection to the train-
ing of a voice conversion system suggested that the more
training data was available, the less speaker-specific infor-
mation was learned. This paradoxical effect contradicts the
experience we have from other corpus-based applications as
speech recognition, synthesis or translation. There, the per-
formance usually gains with increasing amount of data. In
this paper, we investigate this paradox by means of objec-
tive tests and derive a mathematical model of the underlying
stochastic process.

1. INTRODUCTION

In several speech processing applications (e.g. in speech
recognition [1], speaker identification [2], or speech data
mining [3, 4]), we have to find a time alignment between
speech samples, usually generated by different speakers.
Mainly, the texts underlying the compared speech samples
is identical, which allows for applying dynamic time warp-
ing [1] to the problem. If the underlying text is known,
forced alignment [5] can be performed, which may lead to
more accurate results.
However, certain applications require the alignment of ut-
terances, which are not parallel. Here, we face the text-
independent alignment task. Recently, we presented a tech-
nique based on unit selection, which was used for text-inde-
pendent voice conversion training [6] and later extended to
cross-language voice conversion [7].
When compared to text-dependent alignment (dynamic time
warping), the achieved speech quality of the voice-converted
speech was improved by means of the novel technique,
whereas the similarity to the target speaker decreased. Ta-
ble 1 shows the results of a subjective evaluation reported
in [7]. As common metrics, for both overall speech quality
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MOSQ MOSS

(quality) (similarity)
text-dependent 3.3 2.4

text-independent 3.5 2.0
source voice 4.7 1.6

Table 1. Results of a subjective evaluation on the applica-
tion of speech alignment to voice conversion: overall speech
quality (MOSQ) and similarity to the target (MOSS)

and similarity to the target, a mean opinion score [8] on a
five-point scale (1 for bad to 5 for excellent) was applied.
As informal listening tests suggested, both effects, the qual-
ity boost and the similarity score loss, increased with in-
creasing amount of training data. This paper is to study this
paradox focusing on the similarity effect, which can be de-
scribed by objective criteria, rather than the speech quality,
whose objective investigation is still a hard problem [9].

2. TEXT-INDEPENDENT SPEECH ALIGNMENT
BASED ON UNIT SELECTION

We consider two arbitrary speech samples to be aligned. At
first, they are broken down into frames1. Now, the frames
are encoded leading to two sequences of feature vectors2

representing source and target speech,xM
1 andyN

1 . To per-
form the alignment, from the latter, vectors are to be se-
lected and joined to a sequenceỹM

1 that optimally corre-
sponds to the source sequence. This is done by taking two
criteria into account:

1In our study, we utilized pitch-synchronous time frames produced by
the Praat tool [10], since this allows for using standard pitch modification
techniques to change prosodical properties of speech in theframework of
voice conversion. However, all the following considerations also apply to
constant frame lengths as mostly used in speech recognition.

2Here, we use line spectral frequencies; in other applications, one
would certainly prefer other types as mel frequency cepstralcoefficients
or linear predictive coefficients, cf. [11].



Fig. 1. Text-independent speech alignment: average dis-
tance between corresponding source and target feature vec-
tors d depending on the amount of data and the trade-off
parameterα.

α

• The distance between source and corresponding tar-
get features (target cost) is minimum (optimal corre-
spondence).

• The distance to the neighbors of the corresponding
target feature vector (concatenation cost) is minimum
(optimal naturalness). This criterion is supposed to
select naturally smooth segments3 from the target fea-
ture vector sequenceyM

1 .

Mostly, these optima do not coincide, and we must get by
with a compromise between both: We search for the mini-
mum of the weighted sum of target and concatenation cost
for each source feature vector:

ỹM
1 =arg min

yM
1

M
∑

m=1

{

∑

αS(ym−xm)+(1−α)S(ym−1−ym)
}

.

(1)
Here,S(w) is the Euclidean distance

S(w) =
√
w′w (2)

and0 ≤ α ≤ 1 is a weight influencing the trade-off between
target and concatenation cost.

3. EXPERIMENTAL EVIDENCE OF THE SPEECH
ALIGNMENT PARADOX

As already argued in Section 1, we want to limit the investi-
gations on the speech alignment paradox to the similarity of

3or units; that is, where the termunit selectioncomes from. This
paradigm is well-known from concatenative speech synthesis, where op-
timal speech units are selected and concatenated, cf. [12].

Fig. 2. Special caseα = 1.

the aligned speech samples. We claimed that the more data
was available, the less speaker-specific information couldbe
extracted for the application to voice conversion. An expla-
nation of this effect is that the units, which are selected to
minimize the Euclidean distance to the target become more
and more similar to the latter, the more data is available to
select from.
To investigate this effect, we want to use the mean Euclidean
distance between the aligned feature vector sequences as an
objective measure:

d =
1

M

M
∑

m=1

S(ỹm − xm) .

Now, we want to look at the dependence of the increasing
similarity, i.e. decreasingd value, on the amount of data
available. In doing so, we also have to take the trade-off
parameterα, see Eq. 1 into account. We conducted ex-
periments using the evaluation corpus of the project TC-
Star [13], which consists of about 10 minutes of speech of
two female and two male British English voices. Indepen-
dent of the voice combinations to be aligned, we got very
similar outcomes. As an example, we display the results
of a female-male voice combination in Figure 1 in double
logarithmic representation. We observe that independent of
the trade-off parameterα, the values ofd almost constantly
decrease4. To simplify matters, in the following, we look at
the special caseα = 1, the respective diagram is shown in
Figure 2.
For the considered amounts of data, our test samples are
almost located on a straight line in double logarithmic rep-
resentation. Consequently, the relation betweend andt can

4except forα = 0, which does not lead to a useful alignment, since no
target costs are considered



be approximated by5:

log d = c− b log t with b > 0 ;

exponentiation yields

d = ec−b log t = ecelog t−b

= at−b with a, b > 0 . (3)

If we assume the validity of Eq. 3 also for amounts of data
beyond the experiment’s scope, we get the limit

lim
t→∞

d = lim
t→∞

at−b = 0 . (4)

This means, for very large amounts of data, the aligned
speech samples become very similar to each other (for the
limit case even identical), which provides evidence for the
speech alignment paradox. Unfortunately, the speech align-
ment algorithm based on unit selection is very computation-
ally expensive (cf. [7]); to process 400 seconds of speech,
the computation took more than 80 hours on a 3GHz Intel
Xeon machine. Thus, currently, we are not able to mas-
sively increase the amount of data. This is the main reason
for describing the paradox by mathematical means as done
in the next section.

4. TOWARDS A MATHEMATICAL PROOF OF THE
SPEECH ALIGNMENT PARADOX

Although the emperical investigations of Section 3 were
confirmed by several experimental cycles, doubts arose on
the validity of the limit value shown in Eq. 4, as it could be
interpreted as follows:
If there is enough speech data available, an arbitrary ut-
terance of an arbitrary voice can be produced only by
selecting and concatenating units from this data.
However, the crucial point in the statement is the word
enough. Applying the parametersa = 6.8 andb = 0.18 de-
termined on the data of Figure 2 to Eq. 3, we estimated the
required amount of data for several degrees of similarity, cf.
Table 2. We see that the amount of necessary data extremely
grows when the mean distance between source and aligned
target feature vectors becomes smaller and soon exceeds the
limits of the technical possible.
Nonetheless, since the validity of the statement phrased
above could be of high interest to the speech processing
community, in the following, we will investigate the align-
ment technique’s behavior for very large amounts of data by
mathematical means.

4.1. Speech as a Mixture of Gaussians

As introduced in Section 2, we describe the processed speech
by sequences of feature vectors, whose statistical charac-

5in the following equations, we use the normalized timet :=
t

s
to avoid

confusion

d t disk space
5 5.6 s 174 kB
2 900 s = 15 min 27 MB
1 4.2 · 104 s = 11.7 h 1.3 GB

0.5 2.0 · 106 s = 22.8 d 59 GB
0.2 3.2 · 108 s = 10.3 a 9.2 TB

Table 2. Required amount of data (t) for certain degrees of
similarity (d) and the corresponding hard disk space neces-
sary for storing a16kHz/16bit PCM version of the data

teristics are very often described by means of the Gaus-
sian mixture model – in literature, we find applications of
this model to speech recognition [14], language identifica-
tion [15], voice conversion [16], speaker recognition [17],
speaking rate estimation [18], and gender classification [19],
and more.
The success of the Gaussian mixture model in these speech
processing fields also suggests its application to the investi-
gation of the speech alignment paradox.
In order to keep things manageable, we strongly reduce the
degrees of freedom for our first investigations as follows:

• We set the number of Gaussian mixture densities to
K = 16.

• We reduce the dimensionality of the feature vectors
toD = 1 (w.l.o.g.).

• We assume identical covariance matrices for the fea-
ture vector sequences to be aligned, i.e., forD = 1,
we have the standard deviationσ.

4.2. The A-Priori Alignment

When we have a look at the speech samples without per-
forming any alignment, we can determine an a-priori value
for the mean vector distanced: the expected valueE1(d)

7.
The latter is the expected distance between the two normally
distributed random vectorsx andy

E1(d) =

∞
∫

−∞

E1(d|x)N (x|µx, σ)dx , (5)

whereE1(d|x) is the expected value ofd if x is fixed and
N (x|µx, σ) is the probability density function of a normal

6Hence, for these considerations, there is no need for using the term
mixturewhen referring to the model. Interestingly, in particular applica-
tions to voice conversion, it turns out that the optimal choice for K is
small anyway: [20] reportedK = 6, in [21] we findK = 4, and in [22]
we even go down toK = 1 for particular cases of text-independent speech
alignment.

7The subindex 1 is due to the fact that this expected value is a special
case of that described in Section 4.3.



distribution. In the following, we use thestandardnormal
distribution

f(x) =
1√
2π
e−

x2

2

and modify Eq. 5 accordingly

E1(d) =
1

σ

∞
∫

−∞

E1(d|x)f
(

x− µx

σ

)

dx . (6)

Now, we calculate the expected value ofd if x is fixed

E1(d|x)=
1

σ

∞
∫

−∞

|x− y|f
(

y − µy

σ

)

dy (7)

=
1

σ

x
∫

−∞

(x− y)f

(

y − µy

σ

)

dy

= − 1

σ

∞
∫

x

(x− y)f

(

y − µy

σ

)

dy

=

[

σ f

(

y − µy

σ

)

+(x− µy)Φ

(

y − µy

σ

)]x

y=−∞

= −
[

σ f

(

y − µy

σ

)

+(x− µy)Φ

(

y − µy

σ

)]∞

y=x

=2σ f

(

x− µy

σ

)

+(x− µy)

[

2Φ

(

x− µy

σ

)

−1

]

,

whereΦ(x) is the standard normal cumulative density func-
tion, thus we havedΦ(x)

dx = f(x). By inserting the result
into Eq. 6, we get

E1(d) = 2

∞
∫

−∞

f

(

x− µy

σ

)

f

(

x− µx

σ

)

dx

+2

∞
∫

−∞

x− µy

σ
Φ

(

x− µy

σ

)

f

(

x− µx

σ

)

dx

−
∞
∫

−∞

x− µy

σ
f

(

x− µx

σ

)

dx

= T1 + T2 + T3 .

ForT1 andT3, we have straightforward solutions

T1 =
1

π

∞
∫

−∞

e−
(x−µy)2+(x−µx)2

2σ2 dx

=
1

π

∞
∫

−∞

e−
(2x−µx−µy)2+(µy−µx)2

4σ2 dx

= 2f

(

µy − µx√
2σ

)

∞
∫

−∞

f

(

2x− µx − µy√
2σ

)

dx

= 2f

(

µy − µx√
2σ

) [

σ√
2

Φ

(

2x− µx − µy√
2σ

)]∞

x=−∞

=
√

2σ f

(

µy − µx√
2σ

)

;

T3 = −
[

(µx − µy)Φ

(

x− µx

σ

)

−σ f
(

x− µx

σ

)]∞

x=−∞

= µy − µx ,

whereasT2 requires a more complex derivation, which we
omit here only giving the final result8

T2 =
√

2σf

(

µy − µx√
2σ

)

+ 2(µy − µx)

[

Φ

(

µy − µx√
2σ

)

−1

]

yielding the searched expected value ofd (in the following,
we useδ = µy −µx, the difference between the distribution
means)

E1(d) = 2
√

2σ f

(

δ√
2σ

)

+ 2δΦ

(

δ√
2σ

)

− δ . (8)

Figure 3 showsE1(d) as a function ofδ for σ ∈ {0.5, 1, 2}
and indicates the lower bound ofE1(d), which is given by
the limit

lim
δ/σ→±∞

E1(d) = |δ| . (9)

This limit can also be calculated using Eq. 6: Whenδ
σ ap-

proaches infinity, the deviation ofx’s distribution function
becomes infinitely small as compared with its mean’s dis-
tance toy’s mean. Consequently, the normal distribution

8The authors would be happy to provide the proof to everybody,who is
interested.
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Fig. 3. Expected value of the mean distance between two
feature vectorsE1(d) as a function of the difference of the
distribution meansδ and of the standard deviationσ.
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can be replaced by the Dirac delta function∆ yielding

lim
δ/σ→±∞

E1(d) = lim
δ/σ→±∞

1

σ

∞
∫

−∞

E1(d|x)f
(

x− µx

σ

)

dx

= lim
δ/σ→±∞

1

σ

∞
∫

−∞

E1(d|x)∆

(

x− µx

σ

)

dx

= lim
δ/σ→±∞

1

σ

∞
∫

−∞

E1(d|σξ + µx)∆(ξ)σdξ

= lim
δ/σ→±∞

E1(d|µx) (10)

Applying Eq. 7 yields

lim
..δ/σ→±∞

E1(d)= lim
δ/σ→±∞

2σ f

(

δ

σ

)

+δ

[

Φ

(

δ

σ

)

−1

]

=|δ|. (11)

Interestingly, we found that for the special caseδ = 0 and
σ = 1, Eq. 8 becomes the closed form solution of what
in statistical process control is referred to as the constant
d2

9, whose value1.1284 determined by numerical means is
given in textbooks on process control, e.g. [23]. We obtain

d2 =
2√
π
.

4.3. An Attempt of Finding a Closed-Form Solution

After studying the a-priori alignment, we want to extend
the above approach to the unit selection-based alignment.

9the expected distance between two instances of a standard normally
distributed random process

The principal difference to the former is the minimization
in Eq. 1 to search for the optimal sequence of vectors. This
directly affects the expected value ofd givenx (cf. Eq. 7),
since now we do not have a normal distribution as proba-
bility density function ofy but the more complicated term
pN (y|x)

EN (d|x) =

∞
∫

−∞

|x− y|pN (y|x)dy . (12)

Here,N denotes the number of feature vectors in the tar-
get feature vector sequenceyN

1 , which serves as a pool we
select appropriate units from, see Section 2. Again, we as-
sume these vectors to be normally distributed with the pa-
rametersµy andσ and independent of each other.
For each possibley, we calculate the probability density of
thenth target feature vector being equal toy and closest to
x. The sum over all of these vectors from 1 toN yields the
searched densitypN (y|x).
To be more detailed: The probability density of thenth vec-
tor being equal to y is

Pn =
1

σ
f

(

y − µy

σ

)

.

The probability of thenth vector being closest tox means
that the distance to all other vectorsyν for ν ∈ {1, . . . , N},
ν 6= n is greater than that toyn or, givenyn = y, that
|yν − x| > |y − x|

Qn = p(

N
∧

ν=1
ν 6=n

|yν − x| > |y − x|)

=

N
∏

ν=1
ν 6=n

p(|yν − x| > |y − x|)

= p(|ψ − x| > |y − x|)N−1

=

{

p(ψ < y ∨ ψ > 2x− y)N−1 for y < x

p(ψ > y ∨ ψ < 2x− y)N−1 otherwise

=











(

Φ
(

y−µy

σ

)

+ 1 − Φ
(

2x−y−µy

σ

))N−1

for y < x

(

1 − Φ
(

y−µy

σ

)

+ Φ
(

2x−y−µy

σ

))N−1

otherwise

Here,ψ is ay-like distributed random variable replacingyν

for ν ∈ {1, . . . , N}, ν 6= n. Accordingly, Eq. 12 becomes
(also cf. Eq. 7)

EN (d|x) =

∞
∫

−∞

|x− y|
N

∑

n=1

(PnQn)dy (13)



.=
N

σ

x
∫

−∞

(x−y)f
(

y−µy

σ

)(

1+Φ

(

y−µy

σ

)

−Φ

(

2x−y−µy

σ

))N−1

dy

.=−N
σ

∞
∫

x

(x−y)f
(

y−µy

σ

)(

1−Φ

(

y−µy

σ

)

+Φ

(

2x−y−µy

σ

))N−1

dy

As already mentioned in footnote 7, forN = 1, this be-
comes identical to Eq. 7.
One can show that Eq. 13 can be simplified to the problem
of solving

∫

fm(x) Φn(x−δ)dx for m∈{1, 2} andn∈{0, 1, 2, . . .},

whose closed-form solution we do not know forn > 1.
However, if we consider large values ofδ

σ (cf. Eq. 9), we get
a very exact approximation of the searched expected value
of d as already discussed in Eq. 10 by

lim
δ/σ→±∞

EN (d) = lim
δ/σ→±∞

EN (d|µx) .

Together with Eq. 13, where we substitudey by z + µx, we
have

lim
δ/σ→±∞

EN (d) = (14)

.= lim
δ/σ→±∞

N

σ



−
0

∫

−∞

zf

(

z−δ
σ

)(

1+Φ

(

z−δ
σ

)

−Φ

(−z−δ
σ

))N−1

dz

.= +

∞
∫

0

zf

(

z−δ
σ

)(

1−Φ

(

z−δ
σ

)

+Φ

(−z−δ
σ

))N−1

dz





For δ
σ → ∞, the first integral of this equation becomes zero,

since

lim
δ/σ→∞

f

(

z − δ

σ

)

= 0 for z < 0 . (15)

Furthermore, in the remaining integral, we have

lim
δ/σ→∞

Φ

(−z − δ

σ

)

= 0 for z > 0 ,

and, taking into account the observation in Eq. 15, we are al-
lowed to extend the remaining integral’s lower limit to−∞
since this adds zero. Consequently, forδ

σ → ∞, we can
express Eq. 14 by

lim
δ/σ→∞

EN (d) = ................................................................

lim
δ/σ→∞

N

σ

∞
∫

−∞

zf

(

z − δ

σ

) (

1 − Φ

(

z − δ

σ

))N−1

dz .

Applying the above steps to the caseδ
σ → −∞ and using

the relationsΦ(x) = 1 − Φ(−x) andf(x) = f(−x), we
have

lim
δ/σ→±∞

EN (d) = ................................................................

lim
δ/σ→±∞

N

σ

∞
∫

−∞

zf

(

z − |δ|
σ

)(

1 − Φ

(

z − |δ|
σ

))N−1

dz .

Substitutingz by |δ| − σξ yields10

lim
δ/σ→±∞

EN (d) = ................................................................

=
N

σ

−∞
∫

∞

(|δ| − σξ)f(−ξ) (1 − Φ(−ξ))N−1
(−σdξ)

= N

∞
∫

−∞

(|δ| − σξ)f(ξ)Φ(ξ)N−1dξ

= N |δ|
[

Φ(ξ)N

N

]∞

ξ=−∞

− σN

∞
∫

−∞

ξf(ξ)Φ(ξ)N−1dξ

= |δ| − σµ(N) . (16)

The structure of this formula gives a qualitative overview
about some of the expected value’s characteristics. We have
the term|δ|, which is independent of the standard deviation
σ and a term, which is a constant with respect to|δ| but lin-
early depends onσ.
[24] gives solutions toµ(N) for N ∈ {1, ..., 5}, but so far,
for k > 5, we did not succeed in finding a closed form.
Table 3 gives some example values ofµ(N), and Figure 4
shows a plot ofEN (d) as a function ofδ for several val-
ues ofN . We see that for largeδ, the graphs approach
|δ| − σµ(N) as derived in Eq. 16, and forN = 1, one
obtains the special case discussed in Eqs. 9 and 11.
Although we are not able to find a solution toµ(N) for
an arbitraryN , we can derive partial results exploiting the
symmetries off andΦ

10As the quotientδ
σ

disappears here, we can remove the limit in the
following expressions.



N µ(N) closed form ofµ(N)

1 0 0

2 0.56
1√
π

3 0.85
3

2
√
π

4 1.03
6√
π3

arctan
√

2

5 1.16
15√
π3

arctan
√

2 − 5

2
√
π

10 1.54

100 2.51

1 000 3.24

1 000 000 4.86

Table 3. The offset constantµ(N) for different values ofN .

µ(N) = N

∞
∫

−∞

xf(x)Φ(x)N−1dx

= −N
∞
∫

−∞

ξf(ξ)(1 − Φ(ξ))N−1dξ

= −N
N−1
∑

k=0

(−1)k

(

N − 1
k

)

∞
∫

−∞

ξf(ξ)Φ(ξ)kdξ

= −
N−1
∑

k=0

(−1)k

(

N
k + 1

)

µ(k + 1)

=

N−1
∑

κ=1

(−1)κ

(

N
κ

)

µ(κ) + (−1)Nµ(N) .

This finally yields

µ(N) =
1

2

N−1
∑

k=1

(−1)k

(

N
k

)

µ(k) for N ∈ {1, 3, . . .} .

This formula enables us to recursively computeµ(N) from
µ(1), . . . , µ(N −1); unfortunately, it holds only for oddN ,
so we would not be able to find a general statement unless
we find a description for evenN .
However, there is a way to study the behaviour ofµ(N)
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Fig. 4. Expected value of the minimum distance between
a source feature andN target feature vectorsEN (d) as a
function of the difference of the distribution meansδ and
the number of available target feature vectorsN ; σ = 1.

. σ

. σ

. σ

. δ

. δ

whenN approaches infinity

lim
N→∞

µ(N) = lim
N→∞

N

∞
∫

−∞

xf(x)Φ(x)N−1dx

= lim
N→∞

N





0
∫

−∞

xf(x)Φ(x)N−1dx

+

∞
∫

0

xf(x)Φ(x)N−1dx



 . (17)

We know thatf(x) is an even function, andx is odd,
so xf(x) is also odd. Φ(x) is a strictly positive, mo-
notonous, and bounded function, hence we know that
∫ 0

−∞
xf(x)Φ(x)N−1dx<0 and

∫ ∞

0
xf(x)Φ(x)N−1dx>0.

Consequently, both terms become smaller, if we replace
gN (x) = Φ(x)N−1 by a functionhN (x), which is greater
than the former forx < 0 and smaller forx > 0

hN (x) =















gN (0) = 1
2N−1 for x ≤ 0

0 for 0 < x ≤ ξN

1
2 for ξN < x

Here,ξN > 011 is the position, wheregN (x) becomes12

ξN = Φ−1(2
1

1−N ) . (18)

Figure 5 shows an example of the functionsgN (x) and
hN (x).

11This relation is only true forN > 2, which is, however, no additional
constraint, since we want to investigate the limit forN → ∞.



-4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

x

 

 g
5
(x)

 h
5
(x)

Fig. 5. Example of the functionsgN (x) and hN (x) for
N = 5; ξ5 = 0.998, cf. Eq. 18.
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Applying the definition ofhN (x) to Eq. 17 yields

lim
N→∞

µ(N) ≥ lim
N→∞

N

∞
∫

−∞

xf(x)hN (x)dx

= lim
N→∞





N

2N−1

0
∫

−∞

xf(x)dx

+
N

2

∞
∫

ξN

xf(x)dx







= lim
N→∞

[ −N
2N−1

√
2π

+
Nf(ξN )

2

]

=
1

2
lim

N→∞
Nf(ξN ) . (19)

Using Eq. 18, we can expressN as a function ofξN

N = 1 − log 2

log Φ(ξN )
, (20)

and we observe that whenN approaches infinity, alsoξN
approaches infinity. Consequently, we are allowed to rewrite
Eq. 19 as

lim
N→∞

µ(N) ≥ 1

2
lim

ξN→∞
f(ξN )

(

1 − log 2

log Φ(ξN )

)

= − log 2

2
lim

ξN→∞

f(ξN )

log Φ(ξN )
.

Application of l’Hôspital’s rule produces

lim
N→∞

µ(N) ≥ − log 2

2
lim

ξN→∞

−ξNf(ξN )
1

Φ(ξN )f(ξN )

=
log 2

2
lim

ξN→∞
ξNΦ(ξN )

= ∞ .

Hence, the limit value forµ(N) is infinity if N approaches
infinity. However, this means that for very largeN , the ap-
proximation Eq. 16 is not useful, since the expected value of
d is non-negative. Consequently, whenN approaches infin-
ity, we must not apply the simplifications derived in Eq. 10,
but have to consider the original definition ofd’s expected
value (cf. Eq. 6)

lim
N→∞

EN (d) = lim
N→∞

1

σ

∞
∫

−∞

EN (d|x)f
(

x− µx

σ

)

dx ,

whereEN (d|x) is declared in Eq. 13. Several substitutions
and the application of Lebesgue’s dominated convergence
theorem considering the fact thatE1(d) is finite leads to the
result12

lim
N→∞

EN (d) = 0 .

This can be regarded as a proof of a special case of the
speech alignment paradox taking the above formulated con-
ditions into account.

5. CONCLUSION

For the highly computational complexity of text-indepen-
dent speech alignment based on unit selection, we were not
able to investigate the speech alignment paradox by means
of very large amounts of data. This was the reason for ap-
plying a mathematical model describing two speech sam-
ples by means of Gaussian mixture models. For a special
case, we could derive a mathematical proof of the paradox.
Future work is to focus on the generalization of this paper’s
investigations.
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