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Abstract: Recently, the speaker normalization technique VTLN (vocal tract length
normalization), known from speech recognition, was applied to voice conversion. So
far, VTLN has been performed in frequency domain. However, to accelerate the
conversion process, it is helpful to apply VTLN directly to the time frames of a
speech signal. In this paper, we compare the standard approach with a technique
which directly manipulates the time signal. By means of subjective tests, it is shown
that the performance of voice conversion techniques based on frequency domain and
time domain VTLN are equivalent in terms of speech quality, while the latter requires
about 20 times less processing time.
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1 Introduction

Vocal tract length normalization (VTLN)
(Eide and Gish, 1996) tries to compensate
for the effect of speaker-dependent vocal tract
lengths by warping the frequency axis of the
phase and magnitude spectrum. In speech
recognition, VTLN aims at the normaliza-
tion of a speaker’s voice to remove individual
speaker characteristics and, thus, improve
the recognition performance (Pye and Wood-
land, 1997).

The same technique can be used for voice
conversion (Sündermann, Ney, and Höge,
2003), which is the modification of a source
speaker’s voice in order to sound like another
speaker (Moulines and Sagisaka, 1995). For
instance, voice conversion is applied to speech
synthesis systems to change the identity of
the system’s standard speaker in a fast and
comfortable way. Here, the process is not a
normalization (mapping of several speakers
to a certain individual) but the other direc-
tion (transforming a standard speaker to sev-
eral well-distinguishable individuals). This

consideration led to the term reverse VTLN

when referring to the usage as voice con-
version technique (Eichner, Wolff, and Hoff-
mann, 2004). To simplify matters, in the fol-
lowing, we continue to utilize VTLN in con-
nection with voice conversion.

In speech recognition, most parts of the
signal processing are performed in frequency
domain. Hence, VTLN is applied to the fre-
quency spectrum, cf. Section 2. In the fol-
lowing, we will refer to this technique as FD-
VTLN (frequency domain VTLN).

In contrast to speech recognition, concate-
native speech synthesis predominantly op-
erates in time domain. For instance, the
concatenation of speech segments and the
prosodical manipulation (intonation, speak-
ing rate, etc.) are often based on TD-PSOLA
(time domain pitch-synchronous overlap and
add) (Charpentier and Stella, 1986). The
application of FD-VTLN to speech synthe-
sis requires the transformation from time to
frequency domain and the other way around
using DFT (discrete Fourier transformation)
and inverse DFT, respectively.



However, when a speech synthesis sys-
tem is to be used inside an embedded envi-
ronment, each negligible operation must be
avoided due to very limited processing re-
sources (Black and Lenzo, 2001). This is
the motivation why VTLN should be directly
applied to the time frames of a signal pro-
cessed by a speech synthesizer before being
concatenated and prosodically manipulated
by means of TD-PSOLA. In the following,
we refer to this technique as TD-VTLN (time
domain VTLN). In Section 2.4, we address
a computing time comparison between both
techniques.

The equivalence of FD-VTLN and TD-
VTLN in terms of voice conversion perfor-
mance (speech quality and success of the
voice identity conversion) is investigated with
the help of subjective tests in Section 3.

2 Frequency Domain VTLN

2.1 Preprocessing

Since the advantages of pitch-synchronous
speech modification and analysis are well-
studied, this approach has been also success-
fully applied to voice conversion (Kain and
Macon, 1998).

To extract pitch-synchronous frames from
a given speech signal, we use the algorithm
described in (Goncharoff and Gries, 1998).
In voiced regions, the frame lengths depend
on the fundamental frequency, in unvoiced re-
gions, the pitch extraction algorithm utilizes
a mean approximation.

By applying DFT without zero padding to
the frames, we obtain complex-valued spectra
with distinct numbers of spectral lines. In the
following, these spectra are referred to as X.

2.2 Warping Functions

The realization that the warping of the fre-
quency axis of the magnitude spectrum can
lead to a considerable speech recognition per-
formance gain yielded several more or less
well-studied warping functions. They can be
distinguished regarding the number of pa-
rameters describing the particular function
and their linearity or nonlinearity, respec-
tively. In Table 1, we show a categorization
of the warping functions used in literature.

In general, a warping function is defined as
ω̃(ω|ξ1, ξ2, . . .); 0 ≤ ω, ω̃ ≤ π, where ξ1, ξ2, . . .

are the warping parameters and ω is the nor-
malized frequency with π corresponding to
half the sampling frequency according to the
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Figure 1: Warping the magnitude spectrum:
an example

Nyquist criterion. In Figure 1, we show an
example source spectrum, a warping function
and the resulting target spectrum.

2.3 Choosing a Warping Function

When we apply VTLN to voice conversion, it
does not play an important role which par-
ticular warping function is used since they
result in very similar spectra (Sündermann,
Ney, and Höge, 2003). Hence, the con-
verted speech of different warping functions
is hardly perceptually distinguishable. At
least, this statement is true for remaining in
the same row of Table 1. The effect of in-
creasing the number of warping parameters
on the quality and capability of VTLN-based
voice conversion has not yet been adequately
tested.

In the following, we limit our considera-
tions to the piece-wise linear warping func-
tion with several segments that includes the
two-segment function as a special case, cf.
(Sündermann, Ney, and Höge, 2003):

ω̃(ω|ωI
1 , ω̃I

1) = αiω + βi for ωi ≤ ω < ωi+1

(1)

with αi =
ω̃i+1 − ω̃i

ωi+1 − ωi

, βi = ω̃i+1 − αiωi+1,

0 = ω0 < ω1 < · · · < ωI < ωI+1 = π,

for ω̃i equivalent; i = 0 . . . I.

An example of this monotonous and bounded
function is displayed in Figure 2.



parameters linear nonlinear
one • piece-wise linear with • bilinear (Acero and Stern, 1991)

• two segments • power (Eide and Gish, 1996)
• – asymmetric (Wegmann et al., 1996) • quadratic (Pitz et al., 2001)
• – symmetric (Uebel and Woodland, 1999)

several • piece-wise linear with several segments • allpass transform
• (Sündermann, Ney, and Höge, 2003) (McDonough, Byrne, and Luo, 1998)

Table 1: Categorization of VTLN warping functions

ω̃
/
π

ω/π

Figure 2: Example of a piece-wise linear
warping function

2.4 On the Computational

Complexity

Table 2 shows a comparison between FD and
TD-VTLN with respect to the required op-
erations. When we take the average frame
lengths from the experimental corpus de-
scribed in Section 3.1, Tf = 101 and Tm =
140 for the female and the male speaker, re-
spectively, we obtain an acceleration by a fac-
tor of about 19 for the female and about 26
for the male speaker replacing FD-VTLN by
TD-VTLN.

FD-VTLN TD-VTLN
DFT 4T 2 − 2T –
spline interpolation 40T 40T
IDFT 4T 2 − 2T –
PSOLA 4T 4T

total 8T 2 + 40T 44T

Table 2: FD vs. TD-VTLN: breakdown of
operations

3 Experiments

3.1 The Corpus

The corpus utilized in this work contains sev-
eral hundred Spanish sentences uttered by a
female and a male speaker. The speech sig-
nals were recorded in an acoustically isolated
environment and sampled at a sample fre-
quency of 16 kHz.

3.2 Defining the Warping

Parameters

As mentioned in Section 1, in speech syn-
thesis, VTLN is used to create new voices
that are sufficiently distinguishable from the
original. To investigate this effect, we esti-
mate the warping parameters in the way that
the converted spectra that stem from speech
of a source speaker maximally approach the
corresponding spectra of a target speaker’s
speech. To obtain these corresponding spec-
tra, we apply dynamic time warping to the
speech signals based on equivalent utterances
of both speakers (text-dependent approach).
The cost function, which is to be minimized,
is derived from the objective error criterion
described in (Sündermann et al., 2004) and
leads to the following equation:

α = arg min
α′

N
∑

n=1

wnd(X̃n(α′), Yn)

≈
N

∑

n=1

wn arg min
α′

d(X̃n(α′), Yn)

with wn =

√

E(Xn)E(Yn)
N
∑

ν=1

√

E(Xν)E(Yν)

and d(X,Y ) = E

[

X
√

E(X)
−

Y
√

E(Y )

]

.

Here, N is the number of training frames and
E(X) is the signal energy of the spectrum X.



FD-VTLN TD-VTLN total
source speaker 20% 16% 18%
target speaker 29% 36% 32%

neither 50% 48% 49%

Table 3: Results of the extended ABX test

FD-VTLN TD-VTLN total
female-male 3.3 3.4 3.3
male-female 2.6 2.6 2.6

total 3.0 3.0

Table 4: Results of the MOS test

3.3 Subjective Evaluation

By means of the method described in the last
section, we determined the warping parame-
ter α for the two gender combinations uti-
lizing 10 training sentences. Then, we ap-
plied both FD and TD-VTLN and both gen-
der combinations to 8 sentences of the corpus,
obtaining a total of 32 converted sentences.
From these, 8 sentences were randomly se-
lected in the way that each gender-VTLN
combination was represented by exactly two
sentences. This randomization was carried
out again for each of the 14 participants, 12
of whom were specialists in speech process-
ing.

At first, the participants were asked if the
converted voice sounds similar to the source
or to the target voice or to neither of them
(extended ABX test). This was to control the
capability of VTLN-based voice conversion
to generate new voices. Furthermore, they
were asked to assess the overall sound qual-
ity of the converted speech on a mean opinion
score (MOS) scale between 1 (very bad) and
5 (very good). Table 3 reports the results
of the extended ABX test and Table 4 those
of the MOS rating depending on the VTLN
technique and the gender combination.

3.4 Interpretation

The outcomes of the subjective tests dis-
cussed in the last section can be interpreted
as follows:

• VTLN-based voice conversion features
the capability to manipulate a given
voice in such a way that the result is suf-
ficiently different from the original to be
perceived as another voice: Only 18% of

the example sentences were recognized
as spoken by the source speaker, cf. Ta-
ble 3.

• On the other side, VTLN-based voice
conversion is not appropriate to imitate
a certain speaker’s voice: Table 3 re-
ports that only 32% of the examples
were perceived to be uttered by the tar-
get speaker whose voice characteristics
led to the warping parameter α, cf. Sec-
tion 3.2.

• As Table 4 shows, the overall sound qual-
ity of the two compared techniques FD
and TD-VTLN is equivalent. The aver-
age MOS corresponds to that reported in
the literature dealing with VTLN-based
voice conversion, cf. (Eichner, Wolff, and
Hoffmann, 2004).

• At least for the corpus our tests were
based on, the conversion from a male
to a female voice resulted in an essen-
tially worse MOS than the other direc-
tion, cf. Table 4. This result confirms
the objective error measures reported in
(Sündermann, Ney, and Höge, 2003).

4 Conclusion

This paper addresses the comparison of FD
and TD-VTLN in terms of computational
complexity and conversion quality. It turns
out that the computational costs can be re-
duced by a factor of about 20 replacing FD by
TD-VTLN while keeping the sound quality
and the ability of voice identity conversion.
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